首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7787篇
  免费   228篇
  国内免费   306篇
测绘学   213篇
大气科学   618篇
地球物理   1597篇
地质学   2895篇
海洋学   659篇
天文学   1882篇
综合类   30篇
自然地理   427篇
  2023年   42篇
  2022年   53篇
  2021年   59篇
  2020年   63篇
  2019年   81篇
  2018年   238篇
  2017年   195篇
  2016年   277篇
  2015年   166篇
  2014年   259篇
  2013年   417篇
  2012年   241篇
  2011年   411篇
  2010年   287篇
  2009年   461篇
  2008年   362篇
  2007年   332篇
  2006年   348篇
  2005年   315篇
  2004年   298篇
  2003年   281篇
  2002年   255篇
  2001年   225篇
  2000年   197篇
  1999年   169篇
  1998年   161篇
  1997年   156篇
  1996年   140篇
  1995年   138篇
  1994年   115篇
  1993年   95篇
  1992年   81篇
  1991年   90篇
  1990年   77篇
  1989年   87篇
  1988年   60篇
  1987年   100篇
  1986年   68篇
  1985年   67篇
  1984年   69篇
  1983年   74篇
  1982年   73篇
  1981年   68篇
  1980年   55篇
  1979年   53篇
  1977年   48篇
  1976年   48篇
  1975年   35篇
  1974年   30篇
  1973年   42篇
排序方式: 共有8321条查询结果,搜索用时 46 毫秒
1.
A review on the historical evolution of seismic hazard maps in Turkey is followed by summarizing the important aspects of the updated national probabilistic seismic hazard maps. Comparisons with the predecessor probabilistic seismic hazard maps as well as the implications on the national design codes conclude the paper.  相似文献   
2.
We introduce a concept of generalized blending and deblending, develop its models and accordingly establish a method of deblended-data reconstruction using these models. The generalized models can handle real situations by including random encoding into the generalized operators both in the space and time domain, and both at the source and receiver side. We consider an iterative optimization scheme using a closed-loop approach with the generalized blending and deblending models, in which the former works for the forward modelling and the latter for the inverse modelling in the closed loop. We applied our method to existing real data acquired in Abu Dhabi. The results show that our method succeeded to fully reconstruct deblended data even from the fully generalized, thus quite complicated blended data. We discuss the complexity of blending properties on the deblending performance. In addition, we discuss the applicability to time-lapse seismic monitoring as it ensures high repeatability of the surveys. Conclusively, we should acquire blended data and reconstruct deblended data without serious problems but with the benefit of blended acquisition.  相似文献   
3.
Gorshkov  V.  Chapanov  Y. 《Geomagnetism and Aeronomy》2020,60(8):1152-1158
Geomagnetism and Aeronomy - The solar influence on long-term climatic processes of Earth has been studied with the use of long-term series of historical reconstructions of Total Solar Irradiation...  相似文献   
4.
Klimenko  D. Y. 《Water Resources》2020,47(4):641-650
Water Resources - The study considers the methods for evaluating the maximal possible daily storm rainfall (MPR) in the Middle Ural based on a combination of ground, aerological, satellite, and...  相似文献   
5.
6.
Doklady Earth Sciences - Data on the carbon and oxygen isotopic composition of carbonates from the rocks of the Giyani greenstone belt, Kaapvaal craton, South Africa are presented. This belt is...  相似文献   
7.
In 2011, the discovery of shatter cones confirmed the 28 km diameter Tunnunik complex impact structure, Northwest Territories, Canada. This study presents the first results of ground‐based electromagnetic, gravimetric, and magnetic surveys over this impact structure. Its central area is characterized by a ~10 km wide negative gravity anomaly of about 3 mGal amplitude, roughly corresponding to the area of shatter cones, and associated with a positive magnetic field anomaly of ~120 nT amplitude and 3 km wavelength. The latter correlates well with the location of the deepest uplifted strata, an impact‐tilted Proterozoic dolomite layer of the Shaler Supergroup exposed near the center of the structure and intruded by dolerite dykes. Locally, electromagnetic field data unveil a conductive superficial formation which corresponds to an 80–100 m thick sand layer covering the impact structure. Based on the measurements of magnetic properties of rock samples, we model the source of the magnetic anomaly as the magnetic sediments of the Shaler Supergroup combined with a core of uplifted crystalline basement with enhanced magnetization. More classically, the low gravity signature is attributed to a reduction in density measured on the brecciated target rocks and to the isolated sand formations. However, the present‐day fractured zone does not extend deeper than ~1 km in our model, indicating a possible 1.5 km of erosion since the time of impact, about 430 Ma ago.  相似文献   
8.
Railway ballast forms a major component of a conventional rail track and is used to distribute the load to the subgrade, providing a smooth running surface for trains. It plays a significant role in providing support for the rail track base and distributing the load to the weaker layer underneath. Ballast also helps with drainage, which is an important factor for any type of transportation structure, including railroads. Over time, ballast progressively deforms and degrades under dynamic loading and loses its strength. In this study, extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on the behavior of the reinforced ballast layer and induced strains in a geogrid. A half full-scale railway was constructed for carrying out the tests, which consisted of two rails 800 mm in length with three wooden sleepers(900 mm × 10 mm × 10 mm). Three ballast thicknesses of 200, 300 and 400 mm were used in the tests. The ballast was overlying 500 mm thickness clay in two states, soft and stiff. The tests were carried out with and without geogrid reinforcement; the tests were performed in a well-tied steel box of 1.5 m length ×1 m width ×1 m height. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the amount of settlement increased as the simulated train load amplitude increased, and there was a sharp increase in settlement up to cycle 500. After that, there was a gradual increase that leveled out between, 2500 to 4500 cycles depending on the frequency used. There was a slight increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton but it was higher when the load amplitude increased to 2 tons. The increased amount in settlement depended on the existence of the geogrid and other parameters studied. The transmitted average vertical stress for ballast thicknesses of 30 cm and 40 cm increased as the load amplitude increased, regardless of the ballast reinforcement for both soft and stiff clay. The position of the geogrid had no significant effect on the transmitted stresses. The value of the soil pressure and pore water pressure on ballast thicknesses of 20 cm was higher than for 30 cm and 40 cm thicknesses. This meant that the ballast attenuated the induced waves. The soil pressure and pore water pressure for reinforced and unreinforced ballast was higher in stiff clay than in soft clay.  相似文献   
9.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
10.
The Micropile-Mechanically Stabilized Earth (MSE) wall, specially designed for mountain roads, is proposed to improve the MSE wall local stability, global stability and impact resistance of roadside barriers. Model tests and the corresponding numerical modeling were conducted to validate the serviceability of the Micropile-MSE wall and the reliability of the numerical method. Then, a parametric study of the stress and deformation of Micropile-MSE wall based on the backfill strength and interfacial friction angle between backfill and backslope is conducted to evaluate its performance. The test results indicate that the surcharge-induced horizontal earth pressure, base pressure and lateral displacement of the wall panel of Micropile-MSE wall decrease. The corresponding numerical results are nearly equal to the measured values. The basic failure mode of MSE wall in steep terrain is the sliding of backfill along the backslope, while A-frame style micropiles are capable of preventing the sliding trend. The maximum resultant displacement can be decreased by 6.25% to 46.9% based on different interfacial friction angles, and the displacement can be reduced by 6% ~ 56.1% based on different backfill strengths. Furthermore, the reduction increases when the interfacial friction angle and internal friction angle of backfill decrease. In addition, the lateral displacement of wall panel, the deformation of backfill decrease and the tension strain of geogrid obviously, which guarantees the MSE wall functions and provides good conditions for mountain roads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号