首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   1篇
海洋学   1篇
天文学   1篇
  2017年   1篇
  2010年   1篇
  2005年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.  相似文献   
2.
西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究   总被引:24,自引:11,他引:13  
包古图地区位于西准噶尔东南部,区内出露地层主要为石炭系太勒古拉组、包古图组和希贝库拉斯组,为一套巨厚的半深海相-大陆坡相火山-火山碎屑沉积建造。这套地层的时代归属和地层层序长期以来一直存在争议。本文报导了包古图地区实测地层剖面,并从太勒古拉组玄武岩和包古图组及希贝库拉斯组凝灰岩中分别选出锆石,进行了LA-ICP-MS U-Pb年代学研究,获得206Pb/238U加权平均年龄分别为357.5±5.4Ma、332.1±3.0Ma和336.3±2.5Ma。由此确定这套地层属于早石炭世的杜内阶到维宪阶,由下到上依次为太勒古拉组、包古图组和希贝库拉斯组。  相似文献   
3.
If we are to find unequivocal evidence for life on Mars, we will need new ways to search for it. Jeff L Bada and the MOD team describe the innovative strategy developed for the ExoMars mission.  相似文献   
4.
White stumpnose Rhabdosargus globiceps is the main target of the linefishery in Saldanha Bay. Increased fishing pressure over the last three decades, particularly by the recreational sector, has led to concerns regarding sustainability of the local white stumpnose stock. The fishery was exceptionally productive between 2006 and 2008, with an estimated annual catch of 141.2 tonnes (t). Only 3% of boat outings surveyed were commercial boats targeting white stumpnose, yet this sector accounted for 39.3 t (31%) of the average annual catch. The recreational boat sector accounted for most of the catch (70.0 t), and the recreational shore sector the least (31.9 t). Commercial boat catch per unit effort (CPUE; 3.7 fish angler–1 h–1) was more than 10 times that of recreational boats (0.3 fish angler–1 h–1). White stumpnose catch length-frequency differed significantly (p < 0.01) between the fishing sectors, with the commercial sector retaining larger fish (34.7 cm [SD 5.9]) than the recreational boat (33.9 cm [SD 5.9]) and shore (30.4 cm [SD 5.8]) sectors. A decline in commercial CPUE (2000–2015) of approximately 40% and a concomitant severe decline (>95%) in survey data for juvenile white stumpnose CPUE (2007–2016) indicate that the current rate of exploitation is not sustainable. Recovery of the white stumpnose stock will require a decrease in fishing mortality. Possible management regulations include sector-specific effort limitations, extending the ‘no take’ marine protected area, reducing the recreational-sector bag limit to 5 fish person–1 day–1, implementing a commercial-sector bag limit, and increasing the minimum size limit to 30 cm TL.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号