首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1916篇
  免费   326篇
  国内免费   761篇
测绘学   161篇
大气科学   239篇
地球物理   627篇
地质学   1209篇
海洋学   283篇
天文学   34篇
综合类   102篇
自然地理   348篇
  2024年   4篇
  2023年   28篇
  2022年   42篇
  2021年   39篇
  2020年   76篇
  2019年   96篇
  2018年   84篇
  2017年   69篇
  2016年   108篇
  2015年   128篇
  2014年   134篇
  2013年   129篇
  2012年   114篇
  2011年   125篇
  2010年   113篇
  2009年   121篇
  2008年   176篇
  2007年   162篇
  2006年   148篇
  2005年   126篇
  2004年   108篇
  2003年   93篇
  2002年   97篇
  2001年   88篇
  2000年   64篇
  1999年   75篇
  1998年   74篇
  1997年   55篇
  1996年   60篇
  1995年   47篇
  1994年   54篇
  1993年   35篇
  1992年   28篇
  1991年   32篇
  1990年   22篇
  1989年   9篇
  1988年   13篇
  1987年   3篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1954年   3篇
排序方式: 共有3003条查询结果,搜索用时 31 毫秒
1.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
2.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
3.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
4.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
In the frame of 2D-static problems one approaches the problem of elastic-NRT (not-resisting tension) semi-plane loaded on its limit line. This problem is intended to model the stress situation induced in the soil by a foundation structure. The solution, in terms of activated stress field, is searched for in the class of stress fields satisfying equilibrium and admissibility conditions, by applying an energy approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
8.
This paper gives the results of a programme attempting to exploit ‘la seule bréche’ (Poincaré, 1892, p. 82) of non-integrable systems, namely to develop an approximate general solution for the three out of its four component-solutions of the planar restricted three-body problem. This is accomplished by computing a large number of families of ‘solutions précieuses’ (periodic solutions) covering densely the space of initial conditions of this problem. More specifically, we calculated numerically and only for μ = 0.4, all families of symmetric periodic solutions (1st component of the general solution) existing in the domain D:(x 0 ∊ [−2,2],C ∊ [−2,5]) of the (x 0, C) space and consisting of symmetric solutions re-entering after 1 up to 50 revolutions (see graph in Fig. 4). Then we tested the parts of the domain D that is void of such families and established that they belong to the category of escape motions (2nd component of the general solution). The approximation of the 3rd component (asymmetric solutions) we shall present in a future publication. The 4th component of the general solution of the problem, namely the one consisting of the bounded non-periodic solutions, is considered as approximated by those of the 1st or the 2nd component on account of the `Last Geometric Theorem of Poincaré' (Birkhoff, 1913). The results obtained provoked interest to repeat the same work inside the larger closed domain D:(x 0 ∊ [−6,2], C ∊ [−5,5]) and the results are presented in Fig. 15. A test run of the programme developed led to reproduction of the results presented by Hénon (1965) with better accuracy and many additional families not included in the sited paper. Pointer directions construed from the main body of results led to the definition of useful concepts of the basic family of order n, n = 1, 2,… and the completeness criterion of the solution inside a compact sub-domain of the (x 0, C) space. The same results inspired the ‘partition theorem’, which conjectures the possibility of partitioning an initial conditions domain D into a finite set of sub-domains D i that fulfill the completeness criterion and allow complete approximation of the general solution of this problem by computing a relatively small number of family curves. The numerical results of this project include a large number of families that were computed in detail covering their natural termination, the morphology, and stability of their member solutions. Zooming into sub-domains of D permitted clear presentation of the families of symmetric solutions contained in them. Such zooming was made for various values of the parameter N, which defines the re-entrance revolutions number, which was selected to be from 50 to 500. The areas generating escape solutions have being investigated. In Appendix A we present families of symmetric solutions terminating at asymptotic solutions, and in Appendix B the morphology of large period symmetric solutions though examples of orbits that re-enter after from 8 to 500 revolutions. The paper concludes that approximations of the general solution of the planar restricted problem is possible and presents such approximations, only for some sub-domains that fulfill the completeness criterion, on the basis of sufficiently large number of families.  相似文献   
9.
Summary. A first-order form of the Euler's equations for rays in an ellipsoidal model of the Earth is obtained. The conditions affecting the velocity law for a monotonic increase, with respect to the arc length, in the angular distance to the epicentre, and in the angle of incidence, are the same in the ellipsoidal and spherical models. It is therefore possible to trace rays and to compute travel times directly in an ellipsoidal earth as in the spherical model. Thus comparison with the rays of the same coordinates in a spherical earth provides an estimate of the various deviations of these rays due to the Earth's flattening, and the corresponding travel-time differences, for mantle P -waves and for shallow earthquakes. All these deviations are functions both of the latitude and of the epicentral distance. The difference in the distance to the Earth's centre at points with the same geocentric latitude on rays in the ellipsoidal and in the spherical model may reach several kilometres. Directly related to the deformation of the isovelocity surfaces, this difference is the only cause of significant perturbation in travel times. Other differences, such as that corresponding to the ray torsion, are of the first order in ellipticity, and may exceed 1 km. They induce only small differences in travel time, less than 0.01s. Thus, we show that the ellipticity correction obtained by Jeffreys (1935) and Bullen (1937) by a perturbational method can be recovered by a direct evaluation of the travel times in an ellipsoidal model of the Earth. Moreover, as stated by Dziewonski & Gilbert (1976), we verify the non-dependence of this correction on the choice of the velocity law.  相似文献   
10.
In this paper, we report observations of unusual whistlers recorded at Jammu (geomag. lat. = 22°26′N; L = 1.17), India on March 8, 1999 during the daytime. They are interpreted as one-hop ducted whistlers having propagated along higher L-values in closely spaced narrow ducts from the opposite hemispheres. After leakage from the duct, the waves might have propagated in the earth-ionosphere waveguide towards the equator in surface mode. Tentative explanation of the dynamic spectra of these events is briefly presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号