首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   14篇
  国内免费   17篇
地球物理   105篇
地质学   23篇
海洋学   71篇
综合类   2篇
自然地理   8篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   8篇
  2012年   5篇
  2011年   12篇
  2010年   10篇
  2009年   15篇
  2008年   32篇
  2007年   25篇
  2006年   10篇
  2005年   6篇
  2004年   5篇
  2003年   11篇
  2002年   10篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
1.
The ecological functioning of floodplain lakes is largely influenced by the interaction with the river mainstem. In this study, seasonal variation in water chemistry and the relationship with the river conditions were compared between floodplain lakes that differ in the level of connection to the Usumacinta River, the largest river of Mesoamerica. Samples for suspended solids, nutrients, and chlorophyll a were collected through the year in lakes permanently connected to the river and in lakes that only received water from the Usumacinta for a short period during peak flow. Floodplain lakes showed higher total suspended solids than the river during the dry season while during the rainy season greater differences were observed between the river and the lakes, probably explained by higher concentrations in the river and greater sedimentation in the lakes. Greater organic matter content in the suspended solids was observed in the floodplain lakes, particularly in the more isolated lakes, likely related to high algal biomass. Nitrate concentrations were always higher in the river than in the lakes and lower nitrate concentrations occurred at the isolated lakes, suggesting that processes that remove nitrate occur through the year and are a common feature of floodplain lakes. Phosphorus in the connected lakes was higher than in the river only during the dry season, while in the isolated lakes concentrations were always greater than in the river. Chlorophyll a concentrations were higher in the connected lakes than in the river only during the dry season, while the more isolated lakes exhibited higher values through the year, showing signs of eutrophication. Suspended organic matter, nitrate, and chlorophyll showed larger differences between lake and river sites in the more isolated lakes, probably related to greater water residence time and its influence on primary production. Less connected lakes are more vulnerable to flow alteration because the brief period of connection to the river can be compromised and the effects of eutrophication exacerbated.  相似文献   
2.
胶州湾营养盐浓度与结构的长期变化   总被引:15,自引:0,他引:15  
依据自20世纪60年代以来胶州湾营养盐调查与研究资料,系统分析了近40余年来胶州湾营养盐浓度与结构的长期变化规律,以及2000年以后胶州湾营养盐浓度与结构的变化特征。结果表明,近几十年来胶州湾各项营养盐浓度都呈现增加趋势,但不同种类营养盐浓度变化的时期并不相同。氨氮浓度到2001年达到顶峰,随后呈现下降趋势。而亚硝酸盐...  相似文献   
3.
Murchison Bay is a shallow embayment in the north-western part of Lake Victoria, strongly influenced by urban pollution from the Ugandan capital Kampala. Two stations, representing the semi-enclosed innermost part of the bay and the wider outer part of the bay, were sampled in the period from April 2003 to March 2004, in order to assess the phytoplankton community and the nutrient status in the bay. Murchison Bay was highly eutrophic with average concentrations (n=25) of total phosphorous >90 μg L−1 and total nitrogen >1100 μg L−1 in the inner part of the bay. The phytoplankton community was dominated by a variety of cyanobacterial species and diatoms. Cyanobacteria were dominant in the whole bay, whereas diatoms were more abundant in the outer part of the bay. Moreover, the proportion of N-fixing species like Anabaena sp. was higher in the outer part of the bay, whereas species like Microcystis sp. were more abundant in the inner part of the bay. The phytoplankton community, especially in the outer part of the bay, may be influenced by light limitation. Low NO3-N concentrations in the bay may also indicate a possible N-limitation, thus favouring growth of N-fixing cyanobacteria. The open bay is, however, a complex system, and additional environmental factors and loss processes most likely affect the phytoplankton community.  相似文献   
4.
Surface-active organic substances (SAS), nutrients, chlorophyll a (Chl a), dissolved oxygen (O2), salinity (S) and temperature (T) were measured approximately monthly in the northern Adriatic Sea (NA) during two years. Results were elaborated for two stations of different trophic status. Exhaustive statistical examinations of measured variables were performed to contribute to better understanding of the processes and interdependence of the measured parameters. The results of those analyses allowed the region to be described based on several groups of data relevant for particular processes. Chl a appear to be independent parameter; orthosilicate, nitrite and ammonium represent the parameter group most relevant for regeneration processes; the second group includes nutrients dominant in freshwater inputs (orthophosphate and nitrate), while in the third group are parameters related to primary production processes (T, O2, organic phosphorus and SAS). Probably due to time lags between nutrient uptake and phytoplankton growth as well as between cells growth/division and SAS release, both, the correlation between nutrients and Chl a and the correlation between Chl a and SAS were not statistically significant. Although significantly higher nutrient and Chl a concentrations were found in the mesotrophic western part of the region in comparison to the oligotrophic eastern part, the SAS concentration differences were less marked. It is assumed that more OM is produced, but also at the same time remineralized, at the mesotrophic western part, leading to higher concentrations of regenerated nutrients there. Presence of different phytoplankton taxa and/or fractions (micro and nano) at the two stations may have also contributed to minimize the difference in SAS contents. Higher SAS acidities were noticed in the mesotrophic than in the oligotrophic part.  相似文献   
5.
ABSTRACT

Instream processes alter the concentration and bioavailability of nutrients as they are transported downstream. By relating primary production and periphyton composition to changes in nutrient concentration in a gravel-bed river this study made inferences about recycling and attenuation. Where dissolved inorganic nitrogen (DIN) was abundant, concentrations decreased linearly with distance but by less than required to meet the nitrogen demand of primary production. Where DIN was barely measurable photosynthesis was reduced but only by 50%. We infer that recycling sustained primary production even when DIN concentrations were negligibly small. One implication is that DIN removal underestimates attenuation. Further experimental research on recycling and improved modelling is required to better quantify the length of streams adversely affected by nutrients.  相似文献   
6.
用不同含量的93-B型海洋植物营养素对几种常用的金藻类饵料种进行培养对比试验。结果表明,海洋植物营养素用于培养金藻类效果良好,最适使用含量为30mp·L~-1域40mg·L~-1。此时效果与通常被推荐的培养液所培养的对照组相当或更好.含量过高,则造成某些营养盐过量而产生一定的毒害作用。此营养素使用简便。  相似文献   
7.
During three cruises in the Black Sea, organised in July 1995 and April–May 1997, biological and chemical parameters that can influence the carbon budget were measured in the water column on the NW shelf, particularly in the mixing zone with Danube River waters. We observed in early spring (end of April–May) conditions an important input of freshwater organisms that enhanced the microbial activity in the low salinity range. High bacterial activity regenerates nitrogen in the form of nitrates, but is also responsible for an important consumption of ammonium and phosphate, leading to a high N/P ratio and a strong deficit in phosphorus. The consequence is a limitation of phytoplankton development but also a production of carbohydrates that accumulate all along the salinity gradient. These mechanisms are responsible for a seasonal accumulation of dissolved organic carbon (DOC) that increases from 210 μM in winter to about 280 μM in summer. All this excess DOC disappears during winter, probably degraded by bacterial activity. The degradation of carbon-rich organic matter increases the phosphorus demand by bacteria bringing limitation to phytoplankton primary production.  相似文献   
8.
W. Koeve   《Marine Chemistry》2001,74(4):96
Observations of wintertime nutrient concentrations in surface waters are scarce in the temperate and subarctic North Atlantic Ocean. Three new methods of their estimation from spring or early summer observations are described and evaluated. The methods make use of a priori knowledge of the vertical distribution of oxygen saturation and empirical relationships between nutrient concentrations and oxygen saturation. A south–north increase in surface water winter nutrient concentration is observed. Winter nitrate concentrations range from very low levels of about 0.5 μmol dm−3 at 33°N to about 13.5 μmol dm−3 at 60°N. Previous estimates of winter nitrate concentrations have been overestimates by up to 50%. At the Biotrans Site (47°N, 20°W), a typical station in the temperate Northeast Atlantic, a mean winter nitrate concentration of 8 μmol dm−3 is estimated, compared to recently published values between 11 and 12.5 μmol dm−3. It is shown that most of the difference is due to a contribution of remineralised nitrate that had not been recognized in previous winter nutrient estimates. Mesoscale variation of wintertime nitrate concentrations at Biotrans are moderate (less than ±15% of the regional mean value of about 8 μmol dm−3). Interannual variation of the regional mean is small, too. In the available dataset, there was only 1 year with a significantly lower regional mean winter nitrate concentration (7 μmol dm−3), presumably due to restricted deep mixing during an atypically warm winter. The significance of winter nitrate estimates for the assessment of spring-bloom new production and the interpretation of bloom dynamics is evaluated. Applying estimates of wintertime nitrate concentrations of this study, it is found that pre-bloom new production (0.275 mol N m−2) at Biotrans almost equals spring-bloom new production (0.3 mol N m−2). Using previous estimates of wintertime nitrate yields unrealistically high estimates of pre-bloom new production (1.21–1.79 mol N m−2) which are inconsistent with observed levels of primary production and the seasonal development of biomass.  相似文献   
9.
Abstract. Benthic fluxes of dissolved N. Si and P nutrients, alkalinity, dissolved inorganic C (DIC), and O2 from sediments in the Gulf of Trieste (northern Adriatic, Italy) were measured monthly for 16 months, using laboratory incubated flux chambers at in siru temperatures in the dark. The annual average fluxes were: 02 = -19.3 ± 8.2, DIC = 13.7 ± 9.6, NO3 = -0.04 ± 0.16, NH4 = 0.3 ± 0.4. PO4= 4.001 ± 0.01, Si = 0.9 ± 0.1 mmol m-2 d-1, with strong temporal fluctuations. The highest effluxes of all nutrients and DIC were observed in the summer. Small effluxes of DIC and NH4 and influxes of Si and PO4 were observed in late winter. Only NH4 (ca. 50%) and Si (ca. 70%) fluxes were significantly correlated with temperature. This correlation suggests that the rate of downward input and the quality of sedimented organic matter (autochthonous and allochthonous) were superimposed on the temperature fluctuations. High DIC, NH4 and Si effluxes observed in May 1993 during low temperature were due to the degradation of sedimentary organic matter produced by an early spring bloom of benthic microalgae which occurred about 6 weeks earlies while the autumn phytoplankton bloom was simultaneously reflected in enhanced benthic fluxes due to higher temperature. The role of benthic biological advection in this transport across the sediment-water interface, evaluated by comparison between measured benthic and calculated diffusive fluxes from nutrient pore water concentrations, was of minor importance. This is probably due to low infaunal activity throughout the year it was localized mostly in the narrow surficial layer. The annual average diffusive fluxes of NH4 and PO4 were higher than those measured, probably due to the presence of nitrificationdenitrifi-cation processes and redox-dependent chemical reactions at the oxic sediment-water interface, respectively. Only during bottom-water hypoxia in September 1993 did strong PO4 effluxes prevail. Calculations based on the Redfield stoichiometry of oxic decomposition of organic N to NH4 and NO3, and differences between diffusive and measured NH4 fluxes showed that denitrifkation averaged 0.8 mmol m-2 d-1. Significant correlations between NH4 and PO4 DIC and Si, and NH4 and Si fluxes suggested their parallel regeneration and utilization at the sediment-water interface. The nutrient fluxes observed were not significantly linked to O2 consumption, suggesting also that anaerobic oxidation processes were important at the sediment-water interface in the gulf. The N, P and Si nutriqnts released from sediment pore waters are probably utilized in benthic microalgal and bottorn-hater primary production. This indicates that pelagic and benthic communities in the central part of the Gulf of Trieste function relatively independently of each other.  相似文献   
10.
Sevim Polat 《Marine Ecology》2002,23(2):115-126
Abstract. The monthly changes in chlorophyll a , phytoplankton abundance and nutrient concentrations at two stations, one at the inshore and the other at the deep waters of the northern part of İskenderun Bay, were investigated between 1994 – 1995. The vertical distribution of nutrients and phytoplankton biomass were also studied at the deep station. The concentrations of NO3+NO2-N, PO4-P and SiO4-Si of surface water at both stations were 0.31 – 1.63 µg-at · l-1, 0.08 – 0.60 µg-at · l-1 and 0.50 – 2.7 µg-at · l-1, respectively. The highest concentrations were measured at the inshore station and clear differences were found between the inshore and deep-water stations. Chlorophyll a concentrations ranged from 0.17 to 2.78 µg · l-1 and the highest value was measured in March. At the inshore station, which was affected by land run-off, phytoplankton abundance reached the highest value (21,308 cells · l-1) in October 1995, with a marked dominance of Pseudonitzschia pungens (20,200 cells · l-1). The nutrient and chlorophyll a concentrations at the inshore station were higher than those at the deep station. One reason for this is the land-based nutrient input into the coastal area here. In spite of these effects, the bay is not eutrophicated because of circulation events in the northeastern Mediterranean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号