首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 564 毫秒
1.
Civil engineering structures are often subjected to multidirectional actions such as earthquake ground motion, which lead to complex structural responses. The contributions from the latter multidirectional actions to the response are highly coupled, leading to a MIMO system identification problem. Compared with single‐input, multiple‐output (SIMO) system identification, MIMO problems are more computationally complex and error prone. In this paper, a new system identification strategy is proposed for civil engineering structures with multiple inputs that induce strong coupling in the response. The proposed solution comprises converting the MIMO problem into separate SIMO problems, decoupling the outputs by extracting the contribution from the respective input signals to the outputs. To this end, a QR factorization‐based decoupling method is employed, and its performance is examined. Three factors, which affect the accuracy of the decoupling result, including memory length, input correlation, and system damping, are investigated. Additionally, a system identification method that combines the autoregressive model with exogenous input (ARX) and the Eigensystem Realization Algorithm (ERA) is proposed. The associated extended modal amplitude coherence and modal phase collinearity are used to delineate the structural and noise modes in the fitted ARX model. The efficacy of the ARX‐ERA method is then demonstrated through identification of the modal properties of a highway overcrossing bridge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The spatial variability of seismic ground motion is an important aspect for the earthquake resistant design of extended facilities. A modified response spectrum model, which addresses the problem of multiply supported structures subjected to imperfectly correlated seismic excitations, has already been developed (see References 1 and 2). The present paper proposes a modal combination rule for the case of non-uniform seismic input, which would be used together with the modified response spectrum model in order to compute physical responses. This rule, which accounts for modal cross-correlations, is an extension to an existing rule for the case of uniform seismic motions. It modifies the existing modal cross-correlation coefficients through a correction factor which depends on structural properties and on the characteristics of the wave propagation phenomenon. Finally, some practical considerations on the theoretical development are addressed. They aim at suggesting reasonable simplifications which render the modal combination rule more appealing for engineering purposes. The proposed practical combination rule is validated through a numerical experiment which also characterizes the effect of non-uniform seismic input on modal cross-correlation.  相似文献   

3.
A simple rule is derived to combine, within the framework of a complex mode superposition, the maximum modal responses of systems such as soil-structure and structure-equipment systems, for which closely spaced natural frequencies are likely, and for which, because of the large difference in the damping values of their various components, the assumption of an orthogonal damping matrix may lead to significant errors. The rule constitutes the generalization of Rosenblueth's rule for systems with closely spaced natural frequencies and classical modes, and is expressed in terms of their complex mode shapes and natural frequencies. Its derivation is based on the theory of a complex modal analysis for systems with non-classical modes of vibration and on Rosenblueth's original derivation. As in this original derivation, earthquake ground motions are modelled as a stationary white noise process, but the formulae obtained under this assumption are modified later on to account for the transient nature of actual earthquakes. A numerical example is presented to illustrate the application of the rule, and a comparative study with numerical integration solutions is performed to assess its accuracy. In this comparative study, it predicts the numerical integration solutions with an average error of 0.3 per cent.  相似文献   

4.
A response spectrum method for stationary random vibration analysis of linear, multi-degree-of-freedom systems is developed. The method is based on the assumption that the input excitation is a wide-band, stationary Gaussian process and the response is stationary. However, it can also be used as a good approximation for the response to a transient stationary Gaussian input with a duration several times longer than the fundamental period of the system. Various response quantities, including the mean-squares of the response and its time derivative, the response mean frequency, and the cumulative distribution and the mean and variance of the peak response are obtained in terms of the ordinates of the mean response spectrum of the input excitation and the modal properties of the system. The formulation includes the cross-correlation between modal responses, which is shown to be significant for modes with closely spaced natural frequencies. The proposed procedure is demonstrated for an example structure that is subjected to an ensemble of earthquake-induced base excitations. Computed results based on the response spectrum method are in close agreement with simulation results obtained from time-history dynamic analysis. The significance of closely spaced modes and the error associated with a conventional method that neglects the modal correlations are also demonstrated.  相似文献   

5.
For modal pushover analysis procedures, the model proposed by Ghobarah et al. (called the G model hereafter, 1999) has been extended to account for the contributions of transient higher modes to global seismic damage of structures excited by strong ground motions. The proposed model has physically and perfectly bridged the G model and the final softening model proposed by DiPasquale and Cakmak (1988). Modal damage indexes corresponding to all considered vibration modes are combined by the CQC rule or the SRSS rule. Incremental dynamic analysis (IDA) is performed on three example RC frames to validate the proposed model, and a comprehensive comparison is carried out. The demonstration indicates that the proposed model is easy to implement and reflects the influence of the transition in transient vibration periods and modes on structural damage evolution. Some limitations associated with the proposed model are also addressed. Further experimental validations are needed to improve the model in the future.  相似文献   

6.
关于结构振型参与系数和振型贡献的分析   总被引:1,自引:0,他引:1  
采用振型分解反应谱法求解多自由度弹性体系的地震反应时,为了在满足所需计算精度的前提下减少工作量,需要对振型数量进行合理的选择,而振型数的确定主要取决于结构各阶振型对总体反应的贡献。通过数学推导,对振型贡献及振型数量的选择问题进行了研究。首先,讨论了振型参与系数的性质,在此基础上给出了能够反映结构振型贡献参数的数学表达式,对这些参数的力学含义进行了解释,并给出了相关证明;其次,对有效质量法、振型位移控制法等基于不同振型贡献标准的确定振型数的方法进行了分析比较,指出了其合理性和不足。本文研究对进一步理解结构振型贡献和振型数的选择问题具有一定的理论意义。  相似文献   

7.
Base isolation can be used both to protect the structure and simultaneously to reduce the response of internal equipment. The seismic response of a base-isolated structure has been studied through the shaking table test or numerical calculation before. The object of this paper is to analyse a base-isolated structure by a different analytical approach—perturbation analysis. Recognizing that the horizontal stiffness of an isolation system is much smaller than that of the superstructure, the mathematical expressions of the modal properties of base-isolated structures are derived by the perturbation method in terms of the modal properties of the superstructure and used to study the dynamic response of superstructure and attached equipment in the base-isolated building. This study shows that the first base-isolated mode not only controls the superstructural response but also dominates the response of high-frequency attachment. The contribution of higher modes to the response of base-isolated structures, which is proportional to the horizontal stiffness of isolation system, is very small.  相似文献   

8.
A method, based on the Hilbert–Huang spectral analysis, has been proposed by the authors to identify linear structures in which normal modes exist (i.e., real eigenvalues and eigenvectors). Frequently, all the eigenvalues and eigenvectors of linear structures are complex. In this paper, the method is extended further to identify general linear structures with complex modes using the free vibration response data polluted by noise. Measured response signals are first decomposed into modal responses using the method of Empirical Mode Decomposition with intermittency criteria. Each modal response contains the contribution of a complex conjugate pair of modes with a unique frequency and a damping ratio. Then, each modal response is decomposed in the frequency–time domain to yield instantaneous phase angle and amplitude using the Hilbert transform. Based on a single measurement of the impulse response time history at one appropriate location, the complex eigenvalues of the linear structure can be identified using a simple analysis procedure. When the response time histories are measured at all locations, the proposed methodology is capable of identifying the complex mode shapes as well as the mass, damping and stiffness matrices of the structure. The effectiveness and accuracy of the method presented are illustrated through numerical simulations. It is demonstrated that dynamic characteristics of linear structures with complex modes can be identified effectively using the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
An Erratum has been published for this article in Earthquake Engng. Struct. Dyn. 2004; 33:1429. Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the conceptual simplicity of current procedures with invariant force distribution, now common in structural engineering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric‐plan buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion of the effective earthquake forces is determined by non‐linear static analysis using the inertia force distribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each floor level. These ‘modal’ demands due to the first few terms of the modal expansion are then combined by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The MPA estimates of seismic demand for torsionally‐stiff and torsionally‐flexible unsymmetric systems are shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate for a torsionally‐similarly‐stiff unsymmetric‐plan system and the ground motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
An accurate estimation of the applied load pattern is an essential component in each pushover procedure. Recently, a number of adaptive pushover methods have been proposed in which the effects of the higher modes as well as the progressive changes in the dynamic characteristics of structures are taken into account to compute the applied load pattern. The basic shortcoming of these advanced pushover methods is related to employing the quadratic modal combination rule, whereby the sign reversals of the modal load vectors are suppressed. In this study, an improved displacement-based adaptive pushover method is developed in which the applied load pattern is computed using the factor modal combination rule(FMC). In the proposed procedure, multiple load patterns, depending on the number of the modes considered, are determined in order to take into account the sign reversals of different modal load vectors. The accuracy of the proposed method is verifi ed for seven moment resisting frame buildings of 3, 9 and 20 stories with regularity or vertically geometric and mass irregularities subjected to 60 earthquake ground motion records. The results showed that the proposed methodology is capable of reproducing the peak dynamic responses with very good accuracy.  相似文献   

11.
The modal combination rules commonly used in response spectrum analyses implicitly assume that the peak factor associated with the response quantity of interest is equal to the peak factors of the contributing modal responses. In this paper, we examine the validity of this assumption and demonstrate that it causes the modal combination rules to over‐represent the contribution of the higher modes of vibration to the total response and under‐represent the contribution of the lower modes. Consequently, a response‐spectrum‐based analysis can yield a biased estimate for the peak value of a response quantity when two or more well‐separated modal frequencies make significant contributions to the total response. To correct this potential bias in response‐spectrum‐based estimates, we develop a procedure for estimating the peak factors that is suitable to the response spectrum analysis calculations commonly used in the current design practice. Examples are presented to demonstrate the proper use and potential impact of the proposed procedure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A generalized multi‐mode pushover analysis procedure was developed for estimating the maximum inelastic seismic response of symmetrical plan structures under earthquake ground excitations. Pushover analyses are conducted with story‐specific generalized force vectors in this procedure, with contributions from all effective modes. Generalized pushover analysis procedure is extended to three‐dimensional torsionally coupled systems in the presented study. Generalized force distributions are expressed as the combination of modal forces to simulate the instantaneous force distribution acting on the system when the interstory drift at a story reaches its maximum value during seismic response. Modal contributions to the generalized force vectors are calculated by a modal scaling rule, which is based on the complete quadratic combination. Generalized forces are applied to the mass centers of each story incrementally for producing nonlinear static response. Maximum response quantities are obtained when the individual frames attain their own target interstory drift values in each story. The developed procedure is tested on an eight‐story frame under 15 ground motions, and assessed by comparing the results obtained from nonlinear time history analysis. The method is successful in predicting the torsionally coupled inelastic response of frames responding to large interstory drift demands. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The modal base forces in structures having a straight-line mode of vibration are investigated. Making use of the orthogonality relationship between the different modes, a relation between the modal base shears and base moments is found in all but the straight-line mode. This relation states that the contribution of the inertia forces to the modal overturning moments referred to the centre of rotation of the straight-line mode is identically null. The contributions of the vertical forces and lateral constraints must, however, be accounted for. For the special case of the straight-line mode being proportional to the height of each storey, the centre of rotation coincides with the base of the structure. For the case of the straight-line mode being a uniform displacement, the centre of rotation is at infinity and the contribution of the inertia forces to the modal base shears identically disappears in all but the straight-line mode.  相似文献   

15.
基于复模态的有限元模型修正算法   总被引:2,自引:0,他引:2  
针对地下结构地震响应分析中无限地基辐射阻尼问题,引入复模态情况下的具有非简化的堆积阻尼矩阵的阻尼模型,并针对具有集中质量阵的阻尼模型提出了合并与质量有关的阻尼和堆积阻尼的思想,并据此提出了一种修正此类有限元模型的两步法,首先从复模态参数中提取实模态参数,采用基于模态残余力的识别算法修正刚度矩阵,然后根据复模态参数和已得的刚度矩阵来识别阻尼模型中的刚度参与系数和质量阻尼堆积阻尼联合矩阵。  相似文献   

16.
A method to predict structural damage in its location and severity from modal characteristics of the damaged structure is proposed. No a priori knowledge of the modal characteristics of a corresponding baseline structure is required in the proposed formulation. Instead, information on the geometry of the structure which is reflected in its mass and stiffness distribution is needed. From matrix structural analysis, a system of equations is generated which relates the relative change of stiffness of structural members to a load vector generated from modal parameters of the damaged structure. Different solution techniques are suggested to determine the damage from the generated equations. The feasibility of the proposed formulation is demonstrated via a numerical example of a 10-storey building. Further, an error investigation on the error in the damage predictions due to uncertainties in the input data is carried out.  相似文献   

17.
Techniques developed for structural identification of a structural model are typically based on information regarding the response and the forcing actions. However, in some situations it can be necessary, or simply useful, to refer only to the measured responses. In this paper we describe a technique suitable for identifying the modal model of a spatial frame in the frequency domain when the seismic input is unknown both in time contents and direction. In some previous theoretical works we established that this identification problem has a unique solution when at least three time‐history responses are known. Here numerical techniques are developed which allow the evaluation of the modal quantities in practice. Numerical applications are carried out on plane and spatial framed structures by using a modal model which may be complete, including all the structure's modes, or incomplete, including only the lowest modes. In most cases the obtained results are satisfactory. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The extended N2 method taking into account higher mode effects in elevation   总被引:1,自引:0,他引:1  
The N2 method has been extended in order to take into account higher mode effects in elevation. The extension is based on the assumption that the structure remains in the elastic range when vibrating in higher modes. The seismic demand in terms of displacements and storey drifts can be obtained by enveloping the results of basic pushover analysis and the results of standard elastic modal analysis. The approach is consistent with the extended N2 method used for plan‐asymmetric buildings. The proposed procedure was applied to three variants of three steel frame buildings used in the SAC project. The structural response was investigated for two sets of ground motions. Different ground motion intensities were used in order to investigate the influence of the magnitude of plastic deformations. The N2 results were compared with the results of nonlinear response‐history analysis, two other pushover‐based methods (modal pushover analysis (MPA) and modified MPA (MMPA)), and pushover analysis without consideration of higher modes. It was found that a considerable influence of higher modes on storey drifts is present at the upper part of medium‐and high‐rise structures. This effect is the largest in the case of elastic behaviour and decreases with ground motion intensity. The higher mode effects also depend on the spectral shape. The approximate methods (extended N2, MPA and MMPA) are able to provide fair estimates of response in the case of the test examples. Accuracy decreases with the height of the building, and with the intensity of ground motion. The N2 results are generally conservative. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this study a new method for nonlinear static analysis based on the relative displacements of stories is proposed that is able to be implemented in a single stage analysis and considers the effects of an arbitrary number of higher modes. The method is called the extended drift pushover analysis procedure (EDPA). To define the lateral load pattern, values of the relative displacements of stories are calculated using the elastic modal analysis and the modal combination factors introduced. For determining the combination factors, six different approaches are examined. Buildings evaluated in this study consist of four special steel moment-resisting frames with 10–30 stories. Responses including relative displacements of stories, story shear forces and rotation of plastic hinges in each story are calculated using the proposed approaches in addition to modal pushover analysis and nonlinear dynamic time history analyses. The nonlinear dynamic analysis is implemented using ten consistent earthquake records that have been scaled with regard to ASCE7-10. Distribution of response errors of story shears and plastic hinge rotations show that a major part of error corresponds to the second half of the buildings studied. Thus, the mentioned responses are corrected systematically. The final results of this study show that implementing the EDPA procedure using the third approach of this research is able to effectively overcome the limitations of both the traditional and the modal pushover analyses methods and predict the seismic demands of tall buildings with good accuracy.  相似文献   

20.
多维地震输入下首都机场航站楼T3反应谱分析   总被引:2,自引:0,他引:2  
首都机场航站楼(T3)下部为混凝土和钢混合框架,上部为复杂的双曲面形双层扁网壳,长960 m,宽780 m,为超大体量大跨度复杂空间钢结构体系。本文采用SAP2000有限元软件,对其进行了单维和多维地震输入下的反应谱分析,研究了单维和多维地震输入对构件内力、节点位移和地震总剪力的影响;研究了多维地震输入下地震响应值与按规范地震组合公式计算所得地震响应值的关系;研究了模态提取数目和质量参与系数的关系,CQC法中参与组合的模态数目与结构地震响应的关系。研究表明,采用振型分解反应谱法时,模态频率越高,对结构内力的影响越小,对于对结构影响较小的高频模态,可以忽略其对结构的影响;根据单维和多维地震反应的对比分析,对超大跨度复杂钢结构宜进行三维地震输入的反应谱分析。另外,本文提出了一种新的地震效应组合方法,可替代多维地震反应分析,并弥补现行规范的不足。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号