首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
根据 2 0 0 2 ,2 0 0 0和 1999年中国南极考察和 1992年澳大利亚南极考察资料 ,分析了普里兹湾 73°E断面水团与地转流的结构及其多年变化 :(1)该断面上水团主要有南极表层水、绕极深层水、南极底层水和陆架水 ;(2 )南极表层水 1999,2 0 0 0年向北扩展最强 ,2 0 0 2年向北扩展最弱 ,绕极深层水 2 0 0 2年向南扩展也较强 ,1999和 1992年绕极深层水向南扩展较弱 ,南极底层水 ,位温在 - 0 .3~- 0 .4℃ ,盐度在 34.6 6左右 ,主要是本地形成 ,而 1992年高盐底层水可能来源于其他原因 ;(3)该海域深层水呈显著的升温 ,增暖率约为 0 .0 0 7~ 0 .0 0 8℃ /a;(4 )南极陆坡锋的强度和位置 ,与南极表层水的北向扩展和绕极深层水的变化一致 ;(5 ) 6 2°S~ 6 6°S是绕极流的南缘 ,东向流深度可达 2 0 0 0 m,最大流速中心在 6 4.5°S附近 ,2 0 0 0年北移至 6 3.5°S附近 ,最大流速为 3~ 5 cm/s;陆架上 6 8°S附近主要为流速 1cm /s左右的西向流。  相似文献   

2.
李金洪 《海洋学报》1993,15(1):22-30
本文利用1986~1987年中国第三次南极考察队“极地”号船横渡德雷克海峡时所收集的XBT资料,详细地描述了海峡上层热结构特征与成带现象,讨论了南极区(AAZ)中温度最小值层——Tmin层的成因,分析了海峡中三条锋——亚南极锋(SAF)、极锋(PF)和大陆水边界(CWB)的特征与演变,给出了锋的基本特征量,并认为SAF位置南北移动不但与南极极锋区(APFZ)中的冷环存在有关,而且与SAF北面的双锋出现及其强度有关.  相似文献   

3.
利用剖面浮标的温盐观测资料和上层温度观测资料以及ECCO风应力数据研究了东南印度洋各主要海洋锋的位置、走向和风场的季节变化,并初步分析了亚热带锋(STF)和亚南极锋(SAF)的成锋机制.季节平均的夏季和冬季厄加勒斯锋(AF)分别可以延伸到80°E和82°E,AF在多数情况下可能与SAF和南亚热带锋(SSTF)汇合共同通过Kerguelen-Amsterdam Passage.在克尔盖伦海台以东海盆区,冬季SAF和PF的路径均比夏季偏南,在其他海域二者路径的季节差别不大.克尔盖伦海台以东的深海盆由北向南正负风应力旋度高值中心交替出现,且位置季节变化很小.85°~105°E之间零风应力旋度线位置冬季比夏季偏北.STF位于辐聚区,埃克曼抽吸导致的表层水辐聚可能是STF产生和维持的原因.SAF位置的季节南北摆动幅度小于风应力零旋度线的季节摆动幅度,夏季SAF位置略偏于风应力正旋度区,而冬季大多位于负旋度区,因此风应力旋度不是SAF形成的直接原因.  相似文献   

4.
薛振和  钱平 《海洋预报》1993,10(2):71-74
中国第六次考察队乘“极地号”科学考察船于1989年10月30日离开青岛港,穿越太平洋,于12月3日停靠智利的瓦尔帕莱索港,12月9日离港,经智利内水道,穿过德雷克海峡后于1989年12月71日抵南极乔治王岛上的长城站(62°13′S,58°58′W)。又于1989年1月26日离开长城站,1990年1月11日到达位于南极普里兹湾里的中山站(69°22′S,76°22′E)。从2月16日到2月21日在普里兹湾外进行了一次南大洋考察。于1990年3月1日离开南极大陆回国,途中停靠墨尔本、新加坡后,于1990年4月26日抵达上海(图1)。  相似文献   

5.
近普里兹湾大陆架外水域水文物理特征   总被引:2,自引:0,他引:2  
通过1990年12月~1991年1月中国"极地"号南印度调查资料分析得出如下一些重要结论:(1)83°E以西、64°S以北海域,南极夏季表层水厚度约20m,冬季残留水厚度30~70m,70m以下的水层逐渐过渡到南极深层水。南极深层水中心温度最高,为1.85~2.00℃;83°E以东、64°S以北海域,0~30m为南极夏季表层水,50~100m层为南极冬季残留水,100m以下为南极深层水。深层水中心温度普遍降低,最低为1.04℃,最高为1.49℃。它表明83°E以东区域受陆架水影响更明显。(2)83°E以西,64°S以南海域,为深水大洋向陆架浅海过渡区域,温度由北向南迅速降低,普里兹湾基本为陆架低温水所盘据;83°E以东、64°S以南海域主要为西冰架、谢克尔顿冰架低温水,64°S附近形成东西方延伸的温、盐锋面。(3)由动力计算知,在83°E以西主要为反时针方向环流;83°~98°E中间,63°S南北各有一个顺时针环流;98°E以东基本为南向流控制。但是,近岸有一顺时针涡旋。(4)83°E以西水文锋面主要有夏季表层水锋面;83°E以东主要为陆坡区温度锋,是陆架外高温水与陆架低温水之间过渡带。(5)83°E是水文  相似文献   

6.
普里兹湾附近绕极深层水和底层水及其运动特征   总被引:7,自引:5,他引:7  
利用中国第15次南极科学考察科学考察队的CTD全深度观测资料(1998年11月至1999年2月),分析并讨论了普里兹湾以北的南大洋海域内,绕极深层水(CDW)和南极底层水(AABW)的物理特性及其空间分布.同时还与历史上其他学者的发现进行了比较.指出了在研究海域内,CDW在100~2000m之间从北向南扩展,其高温核(t>1.2℃)和高盐核(S>34.7)在75°E断面上最为深厚,向南扩展得最远;而AABW则在2500m以深由陆坡底部向北扩展,σθ>27.875的高密度水体在70°E断面上最为深厚,向北扩展得最远.此外还通过实测的CTD资料证实了CDW和AABW的经向环流特征,以及它们与迪肯流环(Deaconcell)、亚极地流环和深层流环的一致性.  相似文献   

7.
WOA13是一种平均格点化数据,它覆盖范围广,时间序列长,对于研究海洋锋的分布范围、季节变化、锋面结构有着很好的效果。利用WOA13季节平均温度数据,选取0.25经纬度网格数据,对南极洲极地锋进行了季节变化特征研究。以绝对梯度的最大值连线画出锋线具体位置,对比不同季节断面T-D分布图的差异,得到了南极极地锋的锋面结构、强度等季节变化信息。南极极地锋的锋面变化随着南极冷水的季节变化而不断伸缩,最大锋面强度位置也因此而改变,具有明显的季节变化特征。  相似文献   

8.
关于黄海的潮混合和浅水锋现象,中国和韩国的学者已有一些报道(赵保仁,1987a,b;赵保仁等,1992;Lie,H-J.,1989)。卫星图片和有关水文观测资料表明,夏季,黄海的浅水锋主要分布在苏北浅滩外侧、山东半岛的成山角一石岛近海、渤海海峡、西朝鲜湾和江华湾湾口附近及朝鲜半岛西南部近海。 为了深入了解黄海苏北浅滩外侧浅水锋的分布和水文结构,我们于1990年7月29日至8月1日对该区域进行了一次水文和水化学的专项调査。本文根据这次调查所得的水文资料,对苏北浅滩外侧的海面冷水和浅水锋的分布特征以及锋区的环流结构进行简要论述。 苏北近海的浅水锋常出现在苏北浅滩外侧的陡坡附近(赵保仁,1987a)。本次调查在这一区域设了5个断面,32个大面站和1个连续站。锋区附近的最小站距约4海里(5′经距)左右。调査区域的水深分布和站位如图1所示。这一海区的地形分布特点是海底坡度较大,34°10′N以北海底陡坡在30-40m等深线之间,34°10′N线以南海底陡坡在20-30m等深线之间,陡坡处坡度达4×10-3左右。此外,在122°10''E线附近,还有一向北伸展的沙脊。观测结果表明,苏北浅滩外侧浅水锋现象与地形特征关系密切。  相似文献   

9.
本文利用1975—1981年东海断面调查资料,分析了东海西北部海域(北纬28°—33°,东经125°以西)盐度锋的分布特征及其变化,指出了该区盐度锋终年存在,且有明显的季节变化和年际变化,影响盐度锋分布和变化的主要因子是台湾暖流的强弱、径流量的多寡以及浙江沿岸上升流的盛衰,盐度锋的位置与邻近海域渔场的关系密切,中心渔场一般位于盐度锋的外海侧。  相似文献   

10.
利用中国第九次南大洋考察中南极普里兹湾及其邻近海域的CTD资料,分析研究了调查海域的水文结构特征及其该区南极底层水(AABW)的来源.研究结果表明,在研究海域,深水洋区近表层流由西向东流,而在普里兹湾内存在一个气旋型涡.水文结构中最明显的海洋学特征是:(1)绕极深层水(CDW)的涌升现象明显,涌升最强的位置是麦克罗伯逊地以北海域,最明显的深度是50~200m层,暖水涌升将冬季冷水分隔成南北两部分,并在其中形成孤立的暖水块;(2)陆缘水边界明显,这是绕极深层水与南极冷水之间形成的锋面,一般处在次表层水中,大致位于64°~66°S之间;(3)存在着双跃层结构.观测期间,普里兹湾以北探水海域存在着南极底层水,其来源可能有二:一为当地形成,二为源于威德尔海和罗斯海.  相似文献   

11.
The objective of the paper is to use the data collected along two meridional sections (45° E and 57°30′ E) during the austral summer (January–March) 2004 to understand the influence of seabed topography across the Madagascar and Southwest Indian Ridges on hydrographic parameters. The study was supplemented by World Ocean Circulation Experiment (WOCE) Conductivity-Temperature-Depth data collected during February–March 1996 along 30° E, as well as Levitus climatology. A southward shift of 2° latitude (between 45° E and 57°30′ E) was recorded for the two predominant frontal structures, i.e., the Agulhas Return Front and Southern Subtropical Front, which is attributed to the influence of seabed topography on hydrographic parameters. No significant spatial variation of these fronts was noted between the 30° E and 45° E meridional sections. Between latitudes 31° S and 42° S, the temperature and salinity structures show deepening over the ridges. The Antarctic Circumpolar Current core was detected between 40°15′ S and 43° S.  相似文献   

12.
The frontal structure in the region south of Africa is investigated on the basis of CTD and SADCP measurements along the SR02 hydrophysical section carried by the R/V Akademik Ioffe in December of 2009 from the Cape of Good Hope to 57° S at the Prime Meridian. Eleven jets of the Antarctic Circumpolar Current (ACC) were revealed along the section. These were six jets of the Subantarctic Current (SAC), three jets of the South Polar Current (SPC), and two jets of the Southern Antarctic Current (SthAC). The jet combining the Weddell Front and the Southern Boundary of the ACC was also revealed. All the jets of the SPC based on the data of direct measurements were joined into a single “superjet.” The others were manifested by the local velocity maxima in the surface layer of the ocean. The subtropical water along the section from the Southern Subtropical Front to the Shelf-Slope Front near the African shore was almost completely represented by the Indian Ocean (Agulhas Retroflection) water modified by mixing with the fresher water of the southeastern periphery of the Subtropical Atlantic.  相似文献   

13.
南黄海浮游动物主要种类数量分布年间比较   总被引:3,自引:0,他引:3  
陈峻峰  左涛  王秀霞 《海洋学报》2013,35(6):195-203
分析对比1959年、1982年、1998-2000年以及2007-2010年4个不同时期南黄海中部(34.25°~37.45°N,122.00°~124.00°E)浮游动物主要优势种中华哲水蚤(Calanus sinicus)、太平洋磷虾(Euphausia pacifica)和强壮箭虫(Sagitta crassa)数量时空变化及其与温度、盐度和太平洋年代际震荡指数(Pacific Decadal Oscillation,PDO)变动的关系。结果显示,温度可能对中华哲水蚤和太平洋磷虾数量分布影响较大;强壮箭虫则受盐度影响较大。PDO暖位相时期中华哲水蚤和太平洋磷虾数量显著低于冷位相时期,强壮箭虫则相反。中华哲水蚤和太平洋磷虾丰度与提前3个月PDO值呈显著正相关,强壮箭虫丰度仅与当月PDO值呈显著正相关。  相似文献   

14.
Altimeter and in situ data are used to estimate the mean surface zonal geostrophic current in the section along 115°E in the southern Indian Ocean,and the variation of strong currents in relation to the major fronts is studied.The results show that,in average,the flow in the core of Antarctic Circumpolar Current(ACC) along the section is composed of two parts,one corresponds to the jet of Subantarctic Front(SAF) and the other is the flow in the Polar Front Zone(PFZ),with a westward flow between them.The mean surface zonal geostrophic current corresponding to the SAF is up to 49 cm · s-1 at 46°S,which is the maximal velocity in the section.The eastward flow in the PFZ has a width of about 4.3 degrees in latitudes.The mean surface zonal geostrophic current corresponding to the Southern Antarctic Circumpolar Current Front(SACCF) is located at 59.7 °S with velocity less than 20 cm · s-1.The location of zonal geostrophic jet corresponding to the SAF is quite stable during the study period.In contrast,the eastward jets in the PFZ exhibit various patterns,i.e.,the primary Polar Front(PF1) shows its strong meridional shift and the secondary Polar Front(PF2) does not always coincide with jet.The surface zonal geostrophic current corresponding to SAF has the significant periods of annual,semi-annual and four-month.The geostrophic current of the PFZ also shows significant periods of semi-annual and four-month,but is out of phase with the periods of the SAF,which results in no notable semi-annual and fourmonth periods in the surface zonal geostrophic current in the core of the ACC.In terms of annual cycle,the mean surface zonal geostrophic current in the core of the ACC shows its maximal velocity in June.  相似文献   

15.
Interannual variability of the Japan/East Sea (JES) sea surface temperature (SST) is investigated from the reconstructed NOAA/AVHRR Oceans Pathfinder best SST data (1985–2002) using the complex empirical function (CEOF) analysis. The iterative empirical function analysis is used for the SST data reconstruction. The first two leading CEOFs account for 86.0% of total variance with 66.4% for the first mode and 19.6% for the second mode. The first CEOF mode represents a standing oscillation and a maximum belt in the central JES. There are two near-7-year events and one 2–3-year event during the period of 1985–2002. The first mode oscillates by adjacent atmospheric systems such as the Aleutian Low, the North Pacific High, the Siberian High, and the East Asian jet stream. Positive correlation in a zonal belt between the first mode JES SST anomaly and the background surface air temperature/SST anomaly reveals intensive ocean-atmosphere interaction near the Polar Front in the North Pacific. The second CEOF mode represents two features: standing oscillation and propagating signal. The standing oscillation occurs in the northern (north of 44°N) and southern (south of 39°N and west of 136°E) JES with around 180° phase difference. A weak southwestward propagating signal is detected between the two regions. The eastward propagating signal is detected from the East Korean Bay to near 135°E. The second mode contains 4–5-year periodicity before 1998 and 2–3-year periodicity thereafter. It is associated with the Arctic Oscillation, which leads it by 1–5-year. Furthermore, a strong correlation with the background surface air temperature/SST anomaly is detected in the tropical to subtropical western Pacific.  相似文献   

16.
The fine-scale circulation around the Heard and McDonald Islands and through the Fawn Trough, Kerguelen Plateau, is described using data from three high-resolution CTD sections, Argo floats and satellite maps of chlorophyll a, sea surface temperature (SST) and absolute sea surface height (SSH). We confirm that the Polar Front (PF) is split into two branches over the Kerguelen Plateau, with the NPF crossing the north-eastern limits of our survey carrying 25 Sv to the southeast. The SPF was associated with a strong eastward-flowing jet carrying 12 Sv of baroclinic transport through the deepest part of Fawn Trough (relative to the bottom). As the section was terminated midway through the trough this estimate is very likely to be a lower bound for the total transport. We demonstrate that the SPF contributes to the Fawn Trough Current identified by previous studies. After exiting the Fawn Trough, the SPF crossed Chun Spur and continued as a strong north-westward flowing jet along the eastern flank of the Kerguelen Plateau before turning offshore between 50°S and 51.5°S. Measured bottom water temperatures suggest a deep water connection between the northern and southern parts of the eastern Kerguelen Plateau indicating that the deep western boundary current continues at least as far north as 50.5°S. Analysis of satellite altimetry derived SSH streamlines demonstrates a southward shift of both the northern and southern branches of the Polar Front from 1994 to 2004. In the direct vicinity of the Heard and McDonald islands, cool waters of southern origin flow along the Heard Island slope and through the Eastern Trough bringing cold Winter Water (WW) onto the plateau. Complex topography funnels flow through canyons, deepens the mixed layer and increases productivity, resulting in this area being the preferred foraging region for a number of satellite-tracked land-based predators.  相似文献   

17.
Temperature and salinity data from 2003 through 2006 from Argo profiling floats have been analyzed to examine the formation and circulation of the North Pacific Subtropical Mode Water (STMW) and the interannual variation of its properties over the entire distribution region. STMW is formed in late winter in the zonally-elongated recirculation gyre south of the Kuroshio and its extension, which extends north of ∼28°N, from 135°E to near the date line. The recirculation gyre consists of several anticyclonic circulations, in each of which thick STMW with a characteristic temperature is formed. After spring, the thick STMW tends to be continually trapped in the respective circulations, remaining in the formation region. From this stagnant pool of thick STMW, some portion seeps little by little into the southern region, where southwestward subsurface currents advect relatively thin STMW as far as 20°N to the south and just east of Taiwan to the west. The STMW formed in the recirculation gyre becomes colder, less saline, and denser to the east, with an abrupt change of properties across 140°E and a gradual change east of 140°E. The STMW formed east of 140°E exhibits coherent interannual variations, increasing its temperature by ∼1°C from 2003 through 2006 and also increasing its salinity by ∼0.05 from 2003 through 2005. These property changes are clearly detected in the southern region as far downstream as just east of Taiwan, with reasonable time lags.  相似文献   

18.
Chiefly based on the observations of surface wind, currents, temperature and salinity from the two cruises of the R/Vs Xiangyanghong 09 and Shijian during the FGGE, this paper discusses the relationships between the surface currents and the wind field in the investigated area (5°N-5°S, 160°-175°E) and analyzes the characteristics of the horizontal distribution of temperature and salinity and their relationships with currents.  相似文献   

19.
The Subtropical Convergence east of New Zealand   总被引:1,自引:1,他引:0  
Hydrographic data from the region of the Subtropical Convergence east of New Zealand between 177°E and 179°E show that in spring the convergence occurs near the Chatham Rise. North of the Chatham Rise the structure is fairly regular with isolines of temperature and salinity sloping upwards towards the south. To the south of the Chatham Rise the structure is more complex with an apparent intrusion of Subtropical Water into the Sub‐antarctic Water below depths of about 150 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号