首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Northern Iraq represents part of the convergent plate boundary between the Arabian and Eurasian plates. The collision zone between these two plates is manifested by the Bitlis–Zagros Fold and Thrust Belt. This belt is one of the most seismically active regions among the present active belts. This study intends to improve our knowledge on the seismotectonic activities in northern Iraq and the surrounding areas. To reach this goal, we used the waveform moment tensor inversion method to determine the focal depths, moment magnitudes, fault plane solutions, and directions of the principal stress axes of 25 events with magnitudes ≥3.5. The seismic data of these events were collected from 54 broadband stations which belong to the Kandilli Observatory and Earthquake Research Institute, the Incorporated Research Institutions for Seismology, the Observatories and Research Facilities for European Seismology, and the Iraqi Seismological Network. Computer Programs in Seismology, version 3.30 (Herrmann and Ammon 2004), was used for analysis. The results show that the focal depth of these events ranged from 15 to 25 km in general. The fault plane solutions show that the strike-slip mechanism is the most dominant mechanism in the study area, usually with a reverse component. The stress regime shows three major directions; north–south, northeast-southwest, and east–west. These directions are comparable with the tectonic regime in the region.  相似文献   

2.
Present-day seismicity,stress field and crustal deformation of Egypt   总被引:2,自引:1,他引:1  
In this study we investigate present-day seismicity and crustal deformation of Egypt based on a comprehensive earthquake catalog from 1900 to 2004 by focal mechanism stress inversion and by recent GPS observations. Spatial distribution of earthquake epicenters indicates that Egypt has been suffered from both interplate and intraplate earthquakes. Most earthquake activity (more than 70%) has been concentrated in northern Egypt along the geologically documented borders of Sinai subplate (northern Red Sea and its two branches Suez rift and Aqaba–Dead Sea transform). The majority of inland earthquake focal mechanisms in Egypt are normal with strike-slip component or strike-slip faulting events. Only a small minority, namely four events, exhibits reverse faulting. The inversion method of Gephart and Forsyth (1984) was applied to calculate the orientation of the principle stress axes and the shape of the stress tensor. The best fitting tensor in Egypt shows homogeneity stress field. The tension stress regime is dominant in northern Egypt. The stress directions are well resolved by the 95% confidence limits, the relative stress magnitude has a value of about 0.3. However, along southern Egypt the strike-slip regime is dominant. The shape factor (R-value) is 0.5, which means that the deviatoric components of σ1 and σ3 are of the same magnitude, but of opposite signs. The average horizontal velocity of GPS stations in Egypt is 5.15± 1.1 mm/year in mostly NNW direction. The results of deformation analysis indicate that the northern Egypt is deformed more than the southern part. Only the Egyptian-Mediterranean coastal–Nile Delta zone dominates as a compression deformation area. However, an extensional deformation has been observed throughout the rest of country. This means that the relative motion of African plate with respect to both Eurasian and Arabian has highly controlled the deformation processes in Egypt.  相似文献   

3.
The 28 February, 2006 Tiab earthquake (Mw 6.0), is the first earthquake to have occurred in the transition zone between the Zagros continental collision and the Makran subduction zone for which the aftershock sequence is recorded by a temporary local seismic network. The epicentral distribution of the aftershocks is diffuse and we cannot define a simple alignment at the surface. The depth of the aftershocks increases gently northward and they are primarily concentrated between 15 and 21 km depth, implying a deeper seismogenic layer than the Zagros. Very low-angle thrust faulting deduced from this local study supports thrusting of the Arabian plate beneath central Iran at the southeastern end of the Zagros as suggested previously based on teleseismic data. The focal mechanism of the main shock indicates a thrust mechanism similar to that of other strong earthquakes in this region, while most of the focal mechanisms of the aftershocks are dominantly strike-slip. We propose that the strike-slip mechanisms belong to right-lateral fault systems that accommodate differential motion at the transition between the Zagros collision zone and the Makran subduction zone. If so, this suggests that the convergence between Arabia and central Iran is at present accommodated along the transition zone by a partitioning process.  相似文献   

4.
Time domain moment tensor analysis of 145 earthquakes (Mw 3.2 to 5.1), occurring during the period 2006–2014 in Gujarat region, has been performed. The events are mainly confined in the Kachchh area demarcated by the Island belt and Kachchh Mainland faults to its north and south, and two transverse faults to its east and west. Libraries of Green's functions were established using the 1D velocity model of Kachchh, Saurashtra and Mainland Gujarat. Green's functions and broadband displacement waveforms filtered at low frequency (0.5–0.8 Hz) were inverted to determine the moment tensor solutions. The estimated solutions were rigorously tested through number of iterations at different source depths for finding reliable source locations. The identified heterogeneous nature of the stress fields in the Kachchh area allowed us to divide this into four Zones 1–4. The stress inversion results indicate that the Zone 1 is dominated with radial compression, Zone 2 with strike-slip compression, and Zones 3 and 4 with strike-slip extensions. The analysis further shows that the epicentral region of 2001 MW 7.7 Bhuj mainshock, located at the junction of Zones 2, 3 and 4, was associated with predominant compressional stress and strike-slip motion along ∼ NNE-SSW striking fault on the western margin of the Wagad uplift. Other tectonically active parts of Gujarat (e.g. Jamnagar, Talala and Mainland) show earthquake activities are dominantly associated with strike-slip extension/compression faulting. Stress inversion analysis shows that the maximum compressive stress axes (σ1) are vertical for both the Jamnagar and Talala regions and horizontal for the Mainland Gujarat. These stress regimes are distinctly different from those of the Kachchh region.  相似文献   

5.
We analyzed the waveforms of the small- to moderate-sized earthquakes that took place in the northern part of the inner Isparta Angle (IA) to retrieve their source parameters and combine these results with the focal mechanism solutions of the larger events that occurred in 2007 in E?irdir Lake at the apex of IA. In total, source mechanisms of 20 earthquakes within the magnitude range 3.5 < M < 5.0 were calculated using a regional moment tensor inversion technique. The inversion of the focal mechanisms yields an extensional regime with a NNE–SSW (N38°E) trending σ 3 axis. Inversion results are related to a mainly WNW–ESE oriented normal fault beneath E?irdir Lake. The R value of a NNE–SSW extensional regime is 0.562 showing a triaxial stress state in the region. The current stress regime results from complex subduction processes such as slab pull, slab break-off, roll-back and/or retreating mechanism along the Hellenic and Cyprus arcs and the southwestward extrusion of the Anatolian block since the early Pliocene.  相似文献   

6.
《Journal of Geodynamics》2003,35(1-2):145-156
The seismicity in the Vogtland/NW-Bohemia region is mainly characterized by the occurrence of earthquake swarms. A key to a better understanding of the reasons of earthquake swarms can be provided by focal mechanism investigations. Here we present focal mechanisms for 12 of the strongest events (ML⩾3.0) for the new swarm of 2000. With more than 10,000 events and magnitudes up to 3.7 the new swarm is the most prominent one since the big swarm in 1985/1986. The focal mechanisms of the swarm 2000 show different styles of faulting, namely strike-slip, normal and reverse faulting. There are indications for systematic temporal variations in the dislocation type. A comparison with the mechanisms of the preceding swarms of 1985/1986, 1994 and 1997 which all took place at the same location shows similarities in the faulting types and orientations of the nodal planes for the swarms of 1985/1986, 1994 and 2000. However, the focal mechanisms of 1997 do not fit into the scheme of the others. The focal mechanisms have also been used to determine the regional stress field. It turned out that the stress field in the Vogtland/NW-Bohemia region does not substantially differ from the known stress field in West and Central Europe. It is a strike slip regime with a SE–NW directed σ1-axis and a NE–SW directed σ3-axis.  相似文献   

7.
Double difference relocations of the 1402 Kachchh events (2001–2006) clearly delineate two fault zones viz. south-dipping North Wagad fault (NWF) and almost vertical Gedi fault (GF). The relocated focal depths delineate a marked variation of 4 and 7 km in the brittle-ductile transition depths beneath GF and NWF, respectively. The focal mechanism solutions of 464 aftershocks (using 8–12 first motions) show that the focal mechanisms ranged between pure reverse and pure strike-slip except for a few pure dip-slip solutions. The stress inversions performed for five rectangular zones across the Kachchh rift reveal both clockwise and anticlockwise rotation (7–32°) in the σ1 orientation within the rupture zone, favoring a heterogeneous stress regime with an average N-S fault normal compression. This rotation may be attributed to the presence of crustal mafic intrusives (5–35 km depth) in the rupture zone of the 2001 Bhuj main shock. Results suggest a relatively homogeneous stress regime in the GF zone favoring strike-slip motion, with a fault normal N-S compression.  相似文献   

8.
We investigate the geometry and kinematics of the faults exposed in basement rocks along the Strouma River in SW Bulgaria as well as the sequence of faulting events in order to place constraints on the Cenozoic kinematic evolution of this structurally complex domain. In order to decipher the successive stress fields that prevailed during the tectonic history, we additionally carried out an analysis of mesoscale striated faults in terms of paleostress with a novel approach. This approach is based on the P–T axes distribution of the fault-slip data, and separates the fault-slip data into different groups which are characterized by kinematic compatibility, i.e., their P and T axes have similar orientations. From these fault groups, stress tensors are resolved and in case these stress tensors define similar stress regimes (i.e., the orientations of the stress axes and the stress shape ratios are similar) then the fault groups are further unified. The merged fault groups after being filled out with those fault-slip data that have not been incorporated into the above described grouping, but which present similar geometric and kinematic features are used for defining the final stress regimes. In addition, the sequence of faulting events was constrained by available tectonostratigraphic data.Five faulting events named D1, D2, D3, D4 and D5 are distinguished since the Late Oligocene. D1 is a pure compression stress regime with σ1 stress axis trending NNE-SSW that mainly activated the WNW-ESE to ENE-WSW faults as reverse to oblique reverse and the NNW-SSE striking as right-lateral oblique contractional faults during the Latest Oligocene-Earliest Miocene. D2 is a strike-slip − transpression stress regime with σ1 stress axis trending NNE-SSW that mainly activated the NNW-SSE to N-S striking as right-lateral strike-slip faults and the ENE-WSW striking faults as left-lateral strike-slip ones during the Early-Middle Miocene. D3 extensional event is associated with a NW-SE to WNW-ESE extension causing the activation of mainly low-angle normal faults of NE-SW strike and NNE-SSW to NNW-SSE striking high-angle normal faults. D4 is an extensional event dated from Late Miocene to Late Pliocene. It activated NNW-SSE to NW-SE faults as normal faults and E-W to WNW-ESE faults as right-lateral oblique extensional faults. The latest D5 event is an N-S extensional stress regime that dominates the wider area of SW Bulgaria in Quaternary times. It mainly activated faults that generally strike E-W (ENE-WSW and WNW-ESE) normal faults, along which fault-bounded basins developed. The D1 and D2 events are interpreted as two progressive stages of transpressional tectonics related to the late stages of collision between Apulia and Eurasia plates. These processes gave rise to the lateral extrusion of the Rhodope and Balkan regions toward the SE along the Strouma Lineament. The D3 event is attributed to the latest stage of this collision, and represents the relaxation of the overthickened crust along the direction of the lateral extrusion. The D4 and D5 events are interpreted as post-orogenic extensional events related to the retreat of the Hellenic subduction zone since the Late Miocene and to the widespread back-arc Aegean extension still prevailing today.  相似文献   

9.
南北地震带震源机制解与构造应力场特征   总被引:23,自引:7,他引:16       下载免费PDF全文
南北地震带作为中国大陆地应力场一级分区的边界,其构造应力场的研究对理解大陆强震机理、构造变形和地震应力的相互作用具有重要意义.本文收集南北地震带1970—2014年的震源机制解819条,按照全球应力图的分类标准对震源机制解进行分类,发现其空间分布特征与地质构造活动性质比较吻合.P轴水平投影指示了活动块体的运动方向,T轴水平投影在川滇块体及邻近地区空间差异特征最为突出,存在顺时针旋转的趋势.南北地震带的最大水平主应力方向具有明显的分区特征,北段为NE向走滑类型的应力状态,中段为NEE—EW—NWW向的逆冲类型,南段为SE—SSE—NS—NNE向走滑和正断类型,在川滇块体的北部和西边界应力状态为EW—SE—SSE的正断层类型,表明来自印度板块的NNE或NE向的水平挤压应力和青藏高原物质东向滑移沿大型走滑断裂带向SE向平移的复合作用控制了南北地震带的岩石圈应力场.川滇块体西边界正断层类型应力状态范围与高分辨率地震学观测得到的中下地壳低速带范围基本吻合,青藏高原向东扩张的塑性物质流与横向边界(丽江—小金河断裂带)的弱化易于应变能的释放,在局部地区使NS向拉张的正断层向EW向拉张正断层转变.反演得到的应力状态基本上与各种类型地震的破裂方式比较吻合,也进一步验证反演结果的可靠性,可为地球动力学过程的模拟和活动断层滑动性质的厘定提供参考.  相似文献   

10.
The Daliangshan sub-block is a boundary region among the Bayan Har block, the Sichuan-Yunnan block and the South China block. It hosts four major fault systems:The southwest to south trending Xianshuihe-Zemuhe Fault zone in the west, the Longmenshan fault zone is the northern boundary, the Zhaotong-Lianfeng fault zone in the south, and the NS-trending Mabian-Yanjin fault zone in the east. This study focused on focal mechanisms and the regional stress field of the Daliangshan sub-block to help understand the earthquake preparation process, tectonic deformation and seismic stress interaction in this area. We collected broadband waveform records from the Sichuan Seismic Network and used multiple 1-D velocity models to determine the focal mechanisms of moderate and large earthquakes(ML ≥ 3.5)in the Daliangshan sub-block by using the CAP method. Results for 276 earthquakes from Jan 2010 to Aug 2016 show that the earthquakes are dominated by strike-slip and trust faulting, very few events have normal faulting and the mixed type. We then derived the regional distribution of the stress field through a damp linear inversion(DRSSI)using the focal mechanisms obtained in this study. Inversion results for the spatial pattern of the stress field in the block suggest that the entire region is predominantly under strike-slip and trust faulting regimes, largely consistent with the focal mechanisms. The direction of maximum compression axes is NW-NWW, and part of the area is slightly rotated, which is consistent with the GPS velocity field. Combining geodynamic background, this work suggests that because the Sichuan-Yunnan block is moving to SE and the Tibetan plateau to SE-E along major strike-slip faults, the stress field of the Daliangshan sub-block and its adjacent regions is controlled jointly by the Bayan Har block, the Sichuan-Yunnan block and the South China block.  相似文献   

11.
This study defines the Late Cenozoic stress regimes acting around the Bolu Basin along the North Anatolian Fault in northwestern Turkey. The inferred regional stress regime, obtained from the inversion of measured fault-slip vectors as well as focal mechanism solutions, is significant and induces the right-lateral displacement of the North Anatolian Fault. The field observations have also revealed extensional structures in and around the Bolu Basin. These extensional structures can be interpreted as either a local effect of the regional transtensional stress regime or as the result of the interaction of the fault geometries of the dextral Duzce Fault and the southern escarpment of the North Anatolian Fault, bordering the Bolu Basin in the north and in the south, respectively.The inversion of slip vectors measured on fault planes indicates that a strike-slip stress regime with consistent NW- and NE-trending σHmax(σ1) and σHmin(σ3) axes is dominant. Stress ratio (R) values provided by inversion of slip vectors measured on both major and minor faults and field observations show significant variations of principal stress magnitudes within the strike-slip stress regime resulting in older transpression to younger transtension. These two stress states, producing dextral displacement along NAF, are coaxial with a consistent NE-trending σ3 axis. The earthquake focal mechanism inversions confirm that the transtensional stress regime has continued into recent times, having identical horizontal stress axis directions, characterized by NW and NE-trending σ1 and σ3 axes, respectively. A locally consistent NE-trending extensional, normal faulting regime is also seen in the Bolu Basin. The stress-tensor change within the strike-slip stress regime can be explained by variations in horizontal stress magnitudes that probably occurred in Quaternary times as a result of the westward extrusion of the Anatolian block.  相似文献   

12.
The method of surface-wave amplitude spectra inversion for the seismic moment tensor (SMT) is implemented and tested in the Pribaikalye region. The SMTs are calculated for 39 events with M w = 4.4–6.3, which occurred in the region in 2000–2011. Based on the obtained data, the seismotectionic deformations of the crust are estimated in two seismically active areas-the Northern Pribaikalye and northeastern Baikal rift zone. It is found that on a level of moderate-magnitude events, the region is dominated by the regimes of subhorizontal northwestern extension and strike-slip faulting, which reflects the long-term trends in the stress field of the crust in these parts of the rift.  相似文献   

13.
Iran sits on a region with a high intrinsic level of seismic activity due to its tectonic setting. Through statistical examination of the earthquakes listed in the catalogue from International Institute of Earthquake Engineering and Seismology (IIEES), this research attempted to calculate some seismicity factors and find correlation between them. A preliminary analysis indicated changes in the b-value of the Gutenberg-Richter relationship over the study region. Thus, the study area was divided into five zones (Alborz, Zagros, Azerbaijan, Central and East) and b-value was computed for each zone. Considering faulting mechanism styles and the b-values in the region, it was found that the lowest b-values belong to the thrust events and strike-slip faulting earthquakes have intermediate values. These findings support previous studies. Furthermore, results of b-value calculation were used for the estimation of accumulated differential stresses (σ1σ2) over each zone. Overall, the b-value for Iran is averagely low which signifies the high stress tectonic regime in this region. Also, by having calculated fractal dimension (D) in each zone, a correlation obtained showing that in Iran region, the b-value correlates to fractal dimension by D = 4.2b–2 relation which does not support Aki's (1981) speculation of D = 3b/c.  相似文献   

14.
A MS8.0 earthquake occurred in Wenchuan County, Sichuan Province, China, on May 12, 2008, and subsequently, numerous aftershocks followed. We obtained the moment tensor solutions and source time functions (STFs) for the Wenchuan earthquake and its seven larger aftershocks (MS5.0~6.0) by a new technique of moment tensor inversion using the broadband and long-period seismic waveform data from the Global Seismic Network (GSN). Firstly, the theoretical background and technical flow of the new technique was briefly introduced, and an aftershock of the Wenchuan earthquake sequence was employed to illustrate the real procedure for inverting the moment tensor; secondly, the moment tensor solutions and STFs of the eight events, including the main shock, were presented, and finally, the interpretation of the results was made. The agreement of our results with the GCMT results indicates the new approach is efficient and feasible. By using this approach, not only the moment tensor solution can be obtained but also the STF can be retrieved; the inverted STFs indicate that the source rupture process may be complicated even for the moderate earthquakes. The inverted focal mechanisms of the Wenchuan earthquake sequence show that the most of the aftershocks occurred in the main faults of the Longmenshan fault zone with predominantly thrustingwith minor right-lateral strike-slip component, but some of them may have occurred in the subfaults with strike-slip faulting in the vicinity of the main faults.  相似文献   

15.
IntroductionSouthwest Yunnan region is located in the southeastern margin of Qinghai-Tibet Plateau, bordering on the Sichuan-Yunnan rhomboidal block in the east and on the northeast corner of Indian Plate in the northwest. It is one of the regions of intense tectonic activities and frequent strong earthquakes in China continent. To study the features of modern tectonic stress field of this region is of significance for revealing the evolution mechanisms of Tibetan Plateau as well as for un…  相似文献   

16.
We calculated focal mechanisms for 30 of the strongest events (1.5 M L 3.3) in distinct subregions of Vogtland/Western Bohemia between 1990 and 1998. Our investigations are concerned with events of the swarms near Bad Elster (1991), Haingrün (1991), Nový Kostel (1994 and 1997) and Zwickau (1998), two events from a group of earthquakes near Klingenthal (1997) and eight single events. Seismograms were provided by the digital station networks of the Geophysical Observatory of the University of Munich, the Technical University of Freiberg, the Academy of Sciences of the Czech Republic in Prague, the Masaryk University in Brno and some nearby stations of the German Regional Seismic Network (GRSN). To calculate focal mechanisms two inversion methods were applied. The inferred focal mechanisms do not show a simple, uniform pattern of seismic dislocation. All possible dislocation types – strike-slip, normal and thrust faulting - are represented. The prevailing mechanisms are normal and strike-slip faulting. Considerable differences in the fault plane solutions are noted for the individual subregions as well as in some cases among the individual events of a single swarm. For the Nový Kostel area we succeeded to resolve a change in the orientations of the nodal planes for the two successive swarms of December 1994 and January 1997. Besides this we also observe a change in the mechanisms, namely from strike-slip and normal faulting (December 1994) to strike-slip and thrust faulting (January 1997). Based on the inferred focal mechanisms the stress field was estimated. It turned out, that the dominating stress field in the region Vogtland/Western Bohemia does not substantially differ from the known stress field of West and Central Europe, being characterized by a SE-NW direction of the maximum compressive horizontal stress. We conclude that the seismicity in the Vogtland/Western Bohemia region is not predominantly caused by an independent local stress field, but rather controlled by the dominating stress regime in Central Europe.  相似文献   

17.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

18.
欧亚地震带现代构造应力场及其分区特征   总被引:1,自引:0,他引:1  
利用美国哈佛大学矩心矩张量目录中的2818个地震的震源机制解资料,分析了欧亚地震带及其5个分区现代构造应力场的基本特征,给出了5个分区的震源机制主压应力方向分布图。结果表明:①欧亚地震带以逆断型和走滑型断层活动为主;②地中海地震区以走滑断层活动为主,主压应力方向为SSW向;③伊朗—阿富汗—巴基斯坦地震区以逆断型断层活动为主,主压应力优势方向为NNE—NS向;④喜马拉雅地震以逆断型为主,主压应力优势方向为NS和NE向;⑤川—滇—缅地震区以走滑断层活动为主,主应力场方向为NNE向;⑥印度尼西亚地震区以逆断型断层活动为主,主压应力优势方向为NE—SSW向。各分区的主压应力方向明显受其所在区域板块运动的影响,由此推测板块运动可能是产生欧亚地震带构造应力的主要力源。  相似文献   

19.
The microseismicity of the southeastern-most Zagros is examined by high-resolution data recorded by a temporary dense local seismic network. The seismicity defines a diffuse pattern, mostly located beneath folds in the southern part of the High Zagros Fault (HZF). Seismicity dips gently northward in the depth range 6–25 km, implying slip on a major intracrustal thrust fault extending to the north of the Main Zagros Reverse Fault (MZRF) which seems to connect to the Mountain Frontal Fault (MFF). Furthermore, observed focal mechanisms suggest transpressive motion on the HZF located west of the Zendan-Minab-Palami (ZMP) fault system and striking obliquely to the convergent motion. These observations suggest that the transition zone between the Zagros continental collision zone and the Makran oceanic subduction zone is not confined to the east of the ZMP and some part of the this diffuse transition is accommodated north of the Hormuz Strait in the west by partitioning between strike-slip and shortening components. The Zagros reverse domain is terminated by a transpressive tectonic regime. Moho depth beneath the MZRF, deduced from receiver functions, is almost 45 km thinner than is observed in the central and northern parts of the Zagros. These observations support a model of active underthrusting of the Arabian plate beneath central Iran in the southeastern-most Zagros.  相似文献   

20.
We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes in the Dead Sea basin. The observed seismicity in the Dead Sea basin is divided into nine regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the adequate station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes, out of the 494 focal mechanisms, we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in agreement with the Eastern Boundary fault on the east side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of σ1 and σ2 or the switching of σ2 and σ3 as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号