首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Dongping gold deposit is a mesothermal lode gold deposit hosted in syenite. The ore petrography and chemistry of the tellurides from the alteration zone of the deposit have been studied in detail using optical microscopy, scanning electron microscopy, electron probe micro-beam and X-ray diffraction facilities. The tellurides, consisting mostly of calaverite, altaite, petzite tellurobismuthite and tetradymite, are hosted irregularly in pyrite fractures and voids. In the ore bodies, the species and quantity of tellurides decrease from the top downwards, accompanied with lowering of gold fineness, and the existence of tellurides exhibits a positive correlation with gold enrichment. Mineral paragenesis and chemical variations suggest that during evolution of the ore-forming fluids Te preferably incorporated with Pb to form altaite, followed in sequence by precipitation of petzite, and calaverite when Ag has been exhausted, and the residue fluids were enriched in Au, giving rise to formation of native gold. Calculation with reference of the fineness of native gold coexisting with the tellurides indicates that at 300 °C, log f (Te2) varied between − 8.650 and − 7.625. Taking account of the Au–Ag–Te mineral paragenesis, it is inferred that log ƒ (Te2) varies from − 9.12 to − 6.43, log ƒ (S2) − 11.47 to − 8.86. In consideration of the physicochemical conditions for formation of tellurides, with comparison to some known telluride deposits, it is suggested that high log ƒ (Te2) is a key factor for high fineness of native gold as well as precipitation of abundant tellurides.  相似文献   

2.
黑龙江三道湾子碲金矿床物质组成及成因意义   总被引:3,自引:2,他引:1  
三道湾子碲金矿床位于黑龙江省北部大兴安岭中段成矿带的东部,为一典型的碲化物型金矿床.笔者采用显微镜观察和电子探针分析技术,确认该矿床的矿石中存在碲金银矿、针碲金银矿、碲金矿、碲银矿和碲铅矿等碲化物.矿石中也存在大量自然金颗粒,产在石英、碲金银矿的裂隙中,或与碲化物共生产出.电子探针分析结果显示,该矿床内自然金的w(Au...  相似文献   

3.
The Sandaowanzi gold-telluride deposit, with a total reserve of ?≥?25 t of Au and an average grade of 15 g/t, is located in the Great Hinggan Range Metallogenic Belt in NE China. This deposit is the first reported case of a dominantly Au (±Ag)-telluride deposit in this area and it reveals highly economic bonanza Au- and Ag-telluride ores. Ore bodies principally occur in quartz veins and stockworks and minor in disseminations hosted by trachyandesites and andesitic breccias. Four paragenetic stages of mineralization are identified, demonstrating an early deposition of sulfides and subsequent precipitation of tellurides, which are mainly composed by petzite, sylvanite and to a lesser extent, hessite, calaverite, altaite, unnamed telluride (Au1.8Ag0.2Te), krennerite, empressite, stützite and coloradoite. Abundant telluride assemblages identified from Sandaowanzi ores are mostly attributed to breakdown of early tellurium-bearing phases (i.e., γ- and χ-phases) during cooling. The deposition of substantial Au-Ag-Te minerals are constructed under physicochemical conditions of T?=?240 to 280 °C, pH?=?4.39 to 5.64, logfO2?=–44.8 to –41.8, logfTe2?=–9.75 to –9.43, logαAu+ (aq)/αAg+ (aq)?=??6.87 to –6.56, and gold is mostly scavenged from a HTe?-dominant ore-forming fluid. The unusually high Te concentrations in the Sandaowanzi epithermal system are likely attributed to alkaline to calc-alkaline magmatic degassing.  相似文献   

4.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

5.
The Urals is a complex fold belt, which underwent long geological evolution. The formation of most gold deposits in the Urals is related to the collision stage. In this paper, we review some relatively small listvenite-related gold deposits, which are confined to the large Main Uralian fault zone and some smaller faults within the Magnitogorsk zone. The Mechnikovskoe, Altyn-Tash, and Ganeevskoe deposits are studied in detail in this contribution. They comprise the ore clusters along with other numerous small gold deposits, and constituted the sources for the gold placers exploited in historical time. The gold is hosted by metasomatites (listvenites, beresites) and quartz veins with economic gold grades (up to 20 g/t Au). Listvenites are developed after serpentinites and composed of quartz, fuchsite, and carbonates (magnesite, dolomite) ± albite. Volcanic and volcanoclastic rocks are altered to beresites, consisting of sericite, carbonates (dolomite, ankerite), quartz and albite. Pyrite and chalcopyrite are major ore minerals associated with gold; pyrrhotite, Ni sulfides, galena, sphalerite, arsenopyrite and Au-Ag tellurides are subordinate and rare. Gold in these deposits is mostly high-fineness (>900‰). The lower fineness (∼800‰) is typical of gold in assemblage with polymetallic sulfides and tellurides. The ores have been formed from the NaCl–CO2–H2O ± CH4 fluids of low (∼2 wt% NaCl-equiv.) to moderate (8–16 wt% NaCl-equiv.) salinity at temperatures of 210–330 °C. The oxygen isotopic composition of quartz (δ18O) varies from 14.7 to 15.4‰ (Mechnikovskoe deposit), 13.2 to 13.6‰ (Altyn-Tash deposit) and 12.0 to 12.7‰ (Ganeevskoe deposit). The oxygen isotopic composition of albite from altered rocks of the Ganeevskoe deposit is 10.1‰. The calculated δ18OH2O values of the fluid in equilibrium with quartz are in a range of 5.7–6.3, 4.2–4.6 and 6.3–6.7‰ respectively, and most likely indicate a magmatic fluid source.  相似文献   

6.
The Jiaodong peninsula contains the most important concentration of gold deposits in China, which can be divided into Jiaojia-type and Linglong-type deposits based on mineralization style. The former is characterized by disseminated- and stockwork-style mineralization hosted in first-order regional faults, with relatively larger tonnages and lower gold grades. The latter is characterized by massive auriferous quartz veins commonly hosted in subsidiary second- or third-order faults, with smaller tonnage but higher grade orebodies. Despite these differences, both groups of deposits have the same alteration assemblages, mineral paragenesis, element concentrations, and ore-forming ages.The mainly Jiaojia-type Luoshan gold deposit and the mainly Linglong-type Fushan gold deposit are characterized by H-O-S-Pb isotope data that indicate the ore-forming fluids have a dominantly metamorphic source. The fluids were derived during the Yanshanian orogenic event, and were most likely associated with dehydration and decarbonization processes near the top of the subducting paleo-Pacific plate. The Linglong-type ores have relatively lighter calculated δ18O compositions (−3.9 to −2.3‰) than the Jiaojia-type ores (0.3–8.0‰), possibly because of a greater degree of mixing with meteoric water. Petrographic, cathodoluminescence, microthermometric, and laser Raman spectroscopic analyses of fluid-inclusion assemblages in quartz from the two types of ores indicate fluids were similar, in both cases characterized by medium–high homogenization temperatures (211–393 °C), significant CO2 (∼15% mol), minor CH4 (⩽18% in the carbonic phase), and low salinity (⩽11.2 wt% NaCl eq.). The Linglong-type ores, however, have a wider range of CO2 and CH4 concentration and salinity than the Jiaojia-type ores. Fluid immiscibility, occurred in main ore stage of both ore types, with the trapping conditions of 77–185 MPa and 284–328 °C, although the unmixing is more intense and widespread in the Linglong-type ores. Both fluid-wallrock interaction and fluid immiscibility are important gold-deposition processes in the two types, but immiscibility is more important in the Linglong-type ores and that has led to the typical higher gold grade.In general, there is little geochemical differences between the ore-forming fluids for Jiaojia- and Linglong-type gold deposits. Both Jiaojia- and Linglong-type ores can exist in a single deposit and form in the same metallogenic event. The Linglong-type ores developed as more massive veins, because of their location in zones of more extensive extension and they lack significant post-ore cataclastic deformation.  相似文献   

7.
《Ore Geology Reviews》2010,37(4):333-349
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

8.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

9.
黑龙江三道湾子金矿Au-Ag-Te系列矿物特征及其成矿流体   总被引:5,自引:1,他引:4  
本文采用光学显微镜、扫描电镜和电子探针对黑龙江省三道湾子金矿中Au-Ag-Te系列矿物碲银矿、碲金银矿、针碲金银矿、斜方碲金矿和碲金矿进行了详细的矿物学研究,本次研究还发现Au2Te的存在。碲化物矿物多呈粒状或脉状分布于石英或硫化物矿物的裂隙中。Au-Ag-Te系列矿物中,Au含量与Ag含量呈负相关性,与Te含量呈弱的负相关性。结合Au-Ag-Te成分共生图解及镜下特征对金银碲化物矿物共生组合进行分析表明Te优先与Ag结合形成碲银矿或碲金银矿,只有成矿流体中Ag被大量消耗后,Te才与Au结合形成针碲金银矿、斜方碲金矿、碲金矿,最后当成矿流体中Te也被大量消耗后,Au才会形成自然金。氦、氩同位素研究表明石英—黄铁矿阶段流体包裹体中3He/4He值为0.01~0.03Ra,金银碲化物阶段3He/4He值为0.08~1.04Ra,指示金银碲化物阶段有大量地幔物质参与。  相似文献   

10.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   

11.
The Wang'ershan gold deposit, located in the southern Jiaojia goldfield, is currently the largest gold deposit hosted within the subsidiary faults in Jiaodong Peninsula, with a gold reserve of > 60 t gold at a grade of 4.07 g/t Au. It is hosted in the Late Jurassic Linglong biotite granites and controlled by the second-order, N- to NNE-trending Wang'ershan Fault (and its subsidiary faults) which is broadly parallel to the first-order Jiaojia Fault in the goldfield. Gold mineralization occurs as both disseminated- and stockwork-style and quartz–sulfide vein-style ores, mainly within altered cataclasites and breccias, and sericite–quartz and potassic alteration zones, respectively. Mineralization stages can be divided into (1) the pyrite–quartz–sericite stage, (2) the quartz–pyrite stage, (3) the quartz–sulfide stage, and (4) the quartz–carbonate stage.Two sericite samples associated with the main ore-stage pyrites from pyritic phyllic ores of the deposit with weighted mean plateau 40Ar/39Ar age of 120.7 ± 0.6 Ma and 119.2 ± 0.5 Ma, respectively, were selected for 40Ar/39Ar geochronology. On the basis of petrography and microthermometry, three types of primary fluid inclusions related to the ore forming event were identified: type 1 H2O–CO2–NaCl, type 2 aqueous, and type 3 CO2 fluid inclusions (in decreasing abundance). Stage 1 quartz contains all three primary fluid inclusions, while stages 2 and 3 quartz contain both type 1 and 2 inclusions, and stage 4 quartz contains only type 2 inclusions. The contemporaneous trapping, similar salinities and total homogenization temperature ranges, and different homogenization phases of type 1 and type 2 inclusions indicate that fluid immiscibility did take place in stages 1, 2 and 3 ores, with P–T conditions of 190 to 85 MPa and 334 to 300 °C for stage 1 and 200 to 40 MPa and 288 to 230 °C for stages 2 and 3. Combined with the H–O–C–S–Pb isotopic compositions, ore-forming fluids may have a metamorphic-dominant mixed source, which could be associated with the dehydration and decarbonisation of a subducting paleo-Pacific plate and characterized by medium–high temperature (285–350 °C), CO2-bearing (~ 8 mol%) with minor CH4 (1–4% in carbonic phase), and low salinity (3.38–8.45 eq. wt.% NaCl). During mineralization, the fluid finally evolved into a medium–low temperature NaCl–H2O system. Au(HS)2 was the most probable gold-transporting complex at Wang'ershan, due to the low temperature (157–350 °C) and near-neutral to weakly acidic ore fluids. The reaction between gold-bearing fluids and iron-bearing wall-rocks, and fluid-immiscibility processes caused via fluid–pressure cycling during seismic movement along fault zones that host lode-gold orebodies, which led to breakdown of Au(HS)2, are interpreted as the two main precipitation mechanisms of gold deposition.In general, the Wang'ershan deposit and other deposits in the Jiaojia camp have concordant structural system and wall-rock alteration assemblages, nature of orebodies and gold occurrence conditions, as well as the similar geochronology, ore-forming fluids system and stable isotope compositions. Thus gold mineralization in the Jiaojia goldfield was a large-scale unified event, with consistent timing, origin, process and mechanism.  相似文献   

12.
The Inata gold deposit is hosted in the Bouroum greenstone belt of northern Burkina Faso and contains ca. 5 Moz of gold resource. The greenstone belt is divided into 4 distinct domains: The Pali West, Pali-Minfo and Fété Kolé domains comprised of variable proportions of mafic to intermediated volcanic, volcaniclastic and sedimentary rocks, and the Sona Basin comprised of feldspathic sandstones and turbidites. Potential Tarkwaian-like conglomerates are rarely observed on the eastern margin of the basin. The stratigraphy is crosscut by a series of intrusions between 2172 ± 15 Ma and 2122 ± 4 Ma. A complex deformation sequence is recorded in the rocks and has been interpreted in a five stage scheme: early syn-depositional basin margin faults reactivated through time and partitioning all subsequent regional deformation (DeB); N–S compression (D1B > 2172 Ma); E-W compression (D2B, < ca 2122 Ma); NW–SE compression (D3B), and a late N–S compression (D4B). D2B-D4B overprint all rocks, including those of the Sona Basin and Tarkwaian-like conglomerates. Peak metamorphism is mid- to upper-greenschist facies.Mineralisation at Inata is hosted in black shales and volcaniclastic rocks of the Pali-Minfo domain and comprises shear-zone hosted quartz-tourmaline-ankerite veins with associated sulphides dominated by pyrite and arsenopyrite. Three generations of pyrite (py1, py2, py3) and one generation of arsenopyrite (apy2) have been identified. Py1 is parallel to bedding and early D1B foliation and not associated with gold. Py2 and apy2 are coeval, contain up to 1 ppm gold and are spatially associated with auriferous quartz veins. Py3 locally overprints previous assemblages and is also associated with Au. Fluid inclusions in quartz indicate H2O to H2O–CO2–NaCl fluids in auriferous quartz veins.Microscopic to macroscopic observation of fabric-mineral-vein crosscutting relationships indicate that mineralisation is syn-D2B, disrupted and remobilised during D3B. All observations and data are consistent with Inata representing an orogenic style of gold mineralisation formed relatively late in the evolution of the host terrane.  相似文献   

13.
The Dongping gold deposit hosted in syenites is one of the largest hydrothermal gold deposits in China and composed of ore veins in the upper parts and altered zones in the lower parts of the ore bodies. Pervasive potassic alteration and silicification overprint the wall rocks of the ore deposit. The alteration minerals include orthoclase, microcline, perthite, quartz, sericite, epidote, calcite, hematite and pyrite, with the quartz, pyrite and hematite assemblages closely associated with gold mineralization. The phases of hydrothermal alteration include: (i) potassic alteration, (ii) potassic alteration - silicification, (iii) silicification - epidotization - hematitization, (iv) silicification - sericitization - pyritization and (v) carbonation. Mass-balance calculations in potassic altered and silicified rocks reveal the gain of K2O, Na2O, SiO2, HFSEs and transition elements (TEs) and the loss of REEs. Most major elements were affected by intense mineral reactions, and the REE patterns of the ore are consistent with those of the syenites. Gold, silver and tellurium show positive correlation and close association with silicification. Fluid inclusion homogenization temperatures in quartz veins range from 154 °C to 382 °C (peak at 275 °C–325 °C), with salinities of 4–9 wt.% NaCl equiv. At temperatures of 325 °C the fluid is estimated to have pH = 3.70–5.86, log fO2 =  32.4 to − 28.1, with Au and Te transported as Au (HS)2 and Te22  complexes. The ore forming fluids evolved from high pH and fO2 at moderate temperatures into moderate-low pH, low fO2 and low temperature conditions. The fineness of the precipitated native gold and the contents of the oxide minerals (e.g., magnetite and hematite) decreased, followed by precipitation of Au- and Ag-bearing tellurides. The hydrothermal system was derived from an alkaline magma and the deposit is defined as an alkaline rock-hosted hydrothermal gold deposit.  相似文献   

14.
The Tamlalt–Menhouhou gold deposit belongs to the Neoproterozoic–Palaeozoic Tamlalt inlier located in the Eastern High-Atlas (Morocco). It occurs in altered Upper Neoproterozoic bimodal volcanic and volcano-sedimentary units outcropping in the Tamlalt–Menhouhou area. Gold mineralization has been identified in quartz veins related to shear-zones associated with a strong quartz-phyllic-argillic alteration. Visible free gold is related to goethite–malachite–barite boxworks in quartz veins. The other alteration minerals accompanying gold mineralization are mainly carbonates, chlorite, hematite, albite and pyrite whose relative proportion defines three alteration types. 40Ar/39Ar geochronology performed on phengite grains from phyllic alteration and the auriferous quartz veins, yields plateau ages ranging from 300 ± 5 Ma to 284 ± 12 Ma with a weighted mean age of 293 ± 7 Ma. This identifies a Late Variscan age for the Tamlalt–Menhouhou “shear zones-related” gold deposit and emphasizes the consequences of the Variscan orogeny for gold mineralization in the High-Atlas and Anti-Atlas Neoproterozoic inliers.  相似文献   

15.
The Darreh-Zar porphyry copper deposit is associated with a quartz monzonitic–granodioritic–porphyritic stock hosted by an Eocene volcanic sedimentary complex in which magmatic hydrothermal fluids were introduced and formed veins and alteration. Within the deepest quartz-rich and chalcopyrite-poor group A veins, LVHS2 inclusions trapped high salinity, high temperature aqueous fluids exsolved directly from a relatively shallow magma (0.5 kbar). These late fluids were enriched in NaCl and reached halite saturation as a result of the low pressure of magma crystallization and fluid exsolution. These fluids extracted Cu from the crystallizing melt and transported it to the hydrothermal system. As a result of ascent, the temperature and pressure of these fluids decreased from 600 to 415 °C, and approximately 500–315 bars. At these conditions, K-feldspar and biotite were stabilized. Type A veins were formed at a depth of ∼1.2 km under conditions of lithostatic pressure and abrupt cooling. Upon cooling and decompressing, the fluid intersected with the liquid–vapor field resulting in separation of immiscible liquid and vapor. This stage was recorded by formation of LVHS1, LVHS3 and VL inclusions. These immiscible fluids formed chalcopyrite–pyrite–quartz veins with sericitic alteration envelopes (B veins) under the lithostatic–hydrostatic pressure regime at temperatures between 415 and 355 °C at 1.3 km below the paleowater table. As the fluids ascended, copper contents decreased and these fluids were diluted by mixing with the low salinity-external fluid. Therefore, pyrite-dominated quartz veins were formed in purely hydrostatic conditions in which pressure decreased from 125 bars to 54 bars and temperature decreased from 355 to 298 °C. During the magmatic-hydrothermal evolution, the composition and PT regime changed drastically and caused various types of veins and alterations. The abundance of chalcopyrite precipitation in group B veins suggests that boiling and cooling were important factors in copper mineralization in Darreh-Zar.  相似文献   

16.
The Yuerya gold deposit in eastern Hebei Province, China, is located on the eastern margin of the North China Craton and is hosted by Mesozoic Yanshanian granitoid rocks and adjacent Mesoproterozoic Gaoyuzhuang Formation carbonates. The auriferous quartz veins in this deposit are dominated by pyrite, with subordinate sphalerite, chalcopyrite, and galena in a quartz-dominated gangue that also contains calcite, dolomite, barite, apatite, and fluorite. Gold is present as native gold and electrum, which are generally present as micron-size infillings in microfissures within pyrite and less commonly as tiny inclusions within pyrite, quartz, and tellurobismuthite. The pyrite in this deposit has high Co/Ni ratios and contains elevated concentrations of both of these elements, suggesting that the Yuerya gold deposit has a magmato-hydrothermal origin and that the ore-forming fluids that formed the deposit leached trace elements such as Co, Ni, As, and Au during passage through Archean metamorphic rocks, Mesoproterozoic carbonates, and the Yanshanian Yuerya granitoid. Pyrite in the study area has S/Se ratios and S isotopic compositions that suggest that the sulfur (and by inference the gold) within the deposit was sourced from magmato-hydrothermal fluids that were probably originally derived from Archean metamorphic rocks and Yanshanian granitoids. Tellurobismuthite in the study area is closely intergrown with gold and was the single telluride phase identified during this study. The fineness of gold associated with tellurobismuthite is greater than the fineness of gold associated with pyrite, although the fine particle size of the gold surrounded by tellurobismuthite means that the recovery of this gold is difficult, in turn meaning that the tellurobismuthite has little significance to the economics of the Yuerya gold deposit. Only trace amounts of sulfides are associated with the tellurobismuthite within the Yuerya gold deposit, suggesting that this mineral was deposited under conditions of low fS2 and/or high fTe2. In addition, the presence of tellurides within the Yuerya gold deposit reflects a genetic relationship between the deposit and magmatism. Quartz from mineralized veins in the study area has δ18O values of 11.2‰–12.9‰ and the fluids that formed these veins have δD values of − 78.3‰ to − 72.1‰. The δ34S values of pyrite within the deposit are rather restricted (2.3‰–3.5‰). These data, combined with the trace element geochemistry of sulfides within the deposit, suggest that the formation of the Yuerya gold deposit was closely related to both Archean metamorphic rocks and the Yanshanian Yuerya granitoid.  相似文献   

17.
The Xiongcun district, located in the western segment of the Gangdese porphyry copper belt (GPCB), hosts the only known Jurassic mineralization in the GPCB, Tibet, PRC. The No. I deposit in the Xiongcun district is related to the Middle Jurassic quartz diorite porphyry (167–161 Ma) and the mineralization was formed at ca. 161.5 ± 2.7 Ma. Ore-bearing Middle Jurassic quartz diorite porphyry emplaced into the Early Jurassic volcano-sedimentary rock sequences of the Xiongcun Formation. Veinlets and disseminated mineralization developed within the Middle Jurassic quartz diorite porphyry and the surrounding metamorphosed tuff, hosting a measured and indicated resource of 1.04 Mt copper, 143.31 t gold and 900.43 t silver with an average grade of 0.48% copper, 0.66 g/t gold, and 4.19 g/t silver. The mineralization can be assigned to four stages, including three main stages of hypogene mineralization and one epigenetic stage. The main alteration associated with mineralization is potassic. Seven mineralization-related hydrothermal veins have been recognized, including quartz–sulfide, biotite–sulfide, magnetite–sulfide, quartz–molybdenite–sulfide, chalcopyrite–pyrite–pyrrhotite, pyrite and polymetallic veins. The S and Pb isotopic compositions of the ore sulfides and the Re contents of the molybdenite suggest a mantle source for the ore-forming materials with minor contamination from the subducted sediments. Hydrogen and oxygen isotope compositions of quartz in the ores suggest that both magmatic and meteoric waters were involved in the ore-forming process. The ore-bearing porphyry (167–161 Ma) and ore-forming (161.5 ± 2.7 Ma) ages of the No. I deposit correspond to the time of northward subduction of Neo-Tethys oceanic slab. The geochemical data of the ore-bearing porphyry indicate that the No. I deposit formed in an intra-oceanic island arc setting and the ore-bearing porphyry originated from the partial melting of mantle with limited contribution of subducted sediments. The genesis of the ore-bearing porphyry and No. I deposit is interpreted as being related to northward intra-oceanic subduction of Neo-Tethys oceanic slab in the Middle Jurassic time (167–161 Ma).  相似文献   

18.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

19.
Vein-type gold deposits in the Atud area are related to the metagabbro–diorite complex that occurred in Gabal Atud in the Central Eastern Desert of Egypt. This gold mineralization is located within quartz veins and intense hydrothermal alteration haloes along the NW–SE brittle–ductile shear zone, as well as along the contacts between them. By using the mass balance calculations, this work is to determine the mass/volume gains and losses of the chemical components during the hydrothermal alteration processes in the studied deposits. In addition, we report new data on the mineral chemistry of the alteration minerals to define the condition of the gold deposition and the mineralizing fluid based on the convenient geothermometers. Two generations of quartz veins include the mineralized grayish-to-white old vein (trending NW–SE), and the younger, non-mineralized milky white vein (trending NE–SW). The ore minerals associated with gold are essentially arsenopyrite and pyrite, with chalcopyrite, sphalerite, enargite, and goethite forming during three phases of mineralization; first, second (main ore), and third (supergene) phases. Three main hydrothermal alteration zones of mineral assemblages were identified (zones 1–3), placed around mineralized and non-mineralized quartz veins in the underground levels. The concentrations of Au, Ag, and Cu are different from zone to zone having 25–790 ppb, 0.7–69.6 ppm, and 6–93.8 ppm; 48.6–176.1 ppb, 0.9–12.3 ppm, and 39.6–118.2 ppm; and 53.9–155.4 ppb, 0.7–3.4 ppm, and 0.2–79 ppm for zones 1, 2, and 3, respectively.The mass balance calculations and isocon diagrams (calculated using the GEOISO-Windows program) revealed the gold to be highly associated with the main mineralized zone as well as sericitization/kaolinitization and muscovitization in zone 1 more than in zones 2 and 3. The sericite had a higher muscovite component in all analyzed flakes (average XMs = 0.89), with 0.10%–0.55% phengite content in wall rocks and 0.13%–0.29% phengite content in mineralized quartz veins. Wall rocks had higher calcite (CaCO3) contents and lower MgCO3 and FeCO3 contents than the quartz veins. The chlorite flakes in the altered wall rocks were composed of pycnochlorite and ripidolite, with estimated formation temperatures of 289–295 °C and 301–312 °C, respectively. Albite has higher albite content (95.08%–99.20%) which occurs with chlorite in zone 3.  相似文献   

20.
The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo–Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U–Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M’Papa gold fields, dominantly N–S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE–SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re–Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite–chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ~483 Ma assemblage yields a chondritic initial 187Os/188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW–NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW–SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号