首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
According to historical mean ocean current data through the field observations of the Taiwan Ocean Research Institute during 1991–2005 and survey data of nutrients on the continental shelf of the East China Sea(ECS) in the summer of 2006, nutrient fluxes from the Taiwan Strait and Kuroshio subsurface waters are estimated using a grid interpolation method, which both are the sources of the Taiwan Warm Current. The nutrient fluxes of the two water masses are also compared. The results show that phosphate(PO4-P), silicate(SiO3-Si) and nitrate(NO3-N) fluxes to the ECS continental shelf from the Kuroshio upwelling water are slightly higher than those from the Taiwan Strait water in the summer of 2006. In contrast, owing to its lower velocity, the nutrient flux density(i.e., nutrient fluxes divided by the area of the specific section) of the Kuroshio subsurface water is lower than that of the Taiwan Strait water. In addition, the Taiwan Warm Current deep water, which is mainly constituted by the Kuroshio subsurface water, might directly reach the areas of high-frequency harmful alga blooms in the ECS.  相似文献   

2.
This is the first study of the flocculation of dissolved Fe, Al, Mn, Si, Cu, Pb and Zn during mixing in Zhujiang Estuary, based on the experiment on a series of solutions of salinities ranging from 0 to 24 by mixing the Zhujiang water near Zhongshan University and the seawater in Wan-shan Archipelago area. The mechanism of flocculation of the 7 elements is explored, and the effects of time, acidity and temperature on flocculation are discussed. The results show that the flocculation rates of Fe and Pb in the Zhujiang water are almost a hundred per cent, while that forCu reaches 76%; for Mn, 51%; for Al, 48%; for Zn, 28%; and for Si, 1.2%, indicating that Si is conservative.  相似文献   

3.
Tasbozan  Orkun 《中国海洋工程》2019,33(5):593-600
In this article, the author sets up the abundant traveling wave solutions for time fractional Benjamin–Ono equation which was introduced to describe internal waves in stratified fluids by using Jacobi elliptic function expansion method. The traveling wave solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. It can be seen that the obtained results are found to be important for the statement of some physical demonstrations of problems in mathematical physics and ocean engineering. In ocean engineering Benjamin–Ono equations are generally used in computer simulation for the water waves in deep water and open seas.  相似文献   

4.
I~IOWThe area north of Taiwan is a mixing waters with complicate hydrographic features because itis influenced by the pushing and mixing of different water masses such as the Zhejiang -- Fujiancoastal water, the Taiwan Strait water, the Kuroshio surface water, the KurOShio sub-surfacewater and so on. The planktonic copepods in the area are also very complex and various. From research on species compoSition and ~nal variation, diversity and characteristics of copeal community in the area, …  相似文献   

5.
Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),North Pacific Intermediate Water(NPIW), North Pacific Tropical Intermediate Water(NPTIW) and Antarctic Intermediate Water(AAIW). Around the Lembeh Strait, there exist some north-south differences in terms of water mass properties. NPTIW is only found in the southern Lembeh Strait. Water mass with the salinity of 34.6 is only detected at 200–240 m between NPTW and NPTIW in the southern Lembeh Strait, and results from the process of mixing between the saltier water transported from the South Pacific Ocean and the lighter water from the North Pacific Ocean and Sulawesi Sea. According to the analysis on mixing layer depth, it is indicated that there exists an onshore surface current in the northern Lembeh Strait and the surface current in the Lembeh Strait is southward.These dramatic differences of water masses demonstrate that the less water exchange has been occurred between the north and south of Lembeh Strait. In 2015, the positive wind stress curl covering the northern Lembeh Strait induces the shoaling of thermocline and deepening of NPIW, which show that the north-south difference of airsea system is possible of inducing north-south differences of seawater properties.  相似文献   

6.
The paper deals with the distribution of suspended particulated materials (SPM) in the Changjiang Estuary, the relation of salinity to particulated organic carbon and particulated organic nitrogen, and behaviour of SPM in mixing river-sea water. At the same time, the article shows that the SPM in Changjiang River emptying into the sea contains a large amount of organic matter. The relative concentrations of suspended particulate organic matter and living organic matter gradually increase seaward. In the estuarine environment, there is a linear relationship between log SPM and C/N ratio during the mixing of fresh water with seawater.  相似文献   

7.
A numerical method is designed to examine the response properties of real sea areas to open ocean forcing. The application of this method to modeling the China’s adjacent seas shows that the Bohai Sea has a highest peak response frequency(PRF) of 1.52 d-1; the northern Yellow Sea has a PRF of 1.69 d-1; the Gyeonggi Bay has a high amplitude gain plateau in the frequency band roughly from 1.7 to 2.7 d-1; the Yellow Sea(including the Gyeonggi Bay), the East China Sea shelf and the Taiwan Strait have a common high amplitude gain band with frequencies around 1.76 to 1.78 d-1 and are shown to be a system that responds to the open ocean forcing in favor of amplifying the waves with frequencies in this band; the Beibu Gulf, the Gulf of Thailand and the South China Sea deep basin have PRFs of 0.91, 1.01 and 0.98 d-1 respectively. In addition, the East China Sea has a Poincare mode PRF of 3.91 d-1. The PRFs of the Bohai Sea, the northern Yellow Sea, the Beibu Gulf and the South China Sea can be explained by a classical quarter(half for the Bohai Sea) wavelength resonance theory. The results show that further investigations are needed for the response dynamics of the Yellow Sea-East China Sea-Taiwan Strait system, the East China Sea Poincare mode, the Taiwan Strait, and the Gulf of Thailand.  相似文献   

8.
In the open ocean, radium isotopes are useful tracers of residence time and water-mass mixing. However, limited by the measurement resolution of commonly used gamma counters, the low activity of radium in the open ocean makes it necessary to enrich radium from large volumes of seawater and pretreat radium-enriched carriers prior to measurements. The commonly applied method of radium enrichment and pretreatment, however, has limitations of uneven coating of MnO2 on cartridges, relative...  相似文献   

9.
The separation and simultaneous determination of the traces of U and Th in seawater by IDMS is described. The detection limits of this method are 2.4×10-9 g for Th and 1.1×10-8 g for U. The concentrations of U and Th in seawater nearby Xiamen were measured, which are 3.20 ppb and 7.73 ppt respectively. The precisions fo the method are ±1.7% for U and ±3.6% for Th respectively.  相似文献   

10.
引潮力对海洋环流模式的影响   总被引:2,自引:1,他引:1  
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.  相似文献   

11.
New experimental data that make it possible to explain and predict the observed variability of turbulent-energy dissipation in the upper ocean are discussed. For this purpose, the dependence of the energy dissipation rate of breaking wind waves on their propagation velocity (see [1]) is used. The turbulent-energy dissipation values obtained earlier in [2, 3] by a direct method are compared to the results of radar measurements of individual breaking events presented in [1]. On the basis of this comparison, a strong dependence of the turbulent-energy dissipation value on the stage of wind-wave development, which is characterized by the ratio U a /c p (U a is the wind speed and c p is the phase speed of the peak of the wind-wave spectrum) is confirmed. This dependence was found earlier purely empirically. Moreover, it is shown that the theoretically obtained dependence (c p /U a )4, does not contradict the available empirical data. The results of this study opens possibilities for scientifically substantiated calculations of greenhouse-gas exchange (specifically, CO2 exchange between the ocean and the atmosphere).  相似文献   

12.
The food sources of aquacultured Apostichopus japonicus and the trophic levels of organisms in a sea cucumber(A. japonicus) and prawn(Penaeus japonica) polyculture system in a saltwater pond in Zhuanghe, Liaoning Province were examined using carbon and nitrogen stable isotopes. Across organisms, δ13C ranged from(–25.47±0.20)‰ to(–16.48±0.17)‰(mean±SD), and δ15N ranged from(4.23±0.49)‰ to(12.44±0.09)‰. The δ13C and δ15N contents of A. japonicus, P. japonica and Fenneropenaeus chinensis were comparatively higher than those of other organisms. Values of δ13C and δ15N revealed that P. japonica, Hemigrapsus sanguineus and Neomysis japonica comprised the largest component of the diet of A. japonicus. The mean trophic level of the organisms in this saltwater pond polyculture system was(2.75±0.08). P. japonica, A. japonicus, F. chinensis,Synechogobius hasta and Neomysis japonica were in the 3rd trophic level(2–3); jellyfish, H. sanguineus and zooplankton were in the 2nd trophic level(1–2); and Enteromorpha prolifera, benthic microalgae, periphyton and suspended matter primarily consisting of phytoplankton, bacteria and humus were in the primary trophic level(0–1).  相似文献   

13.
The ocean general circulation model for the earth simulator(OFES) products is applied to estimate the transports of the Mindanao Current(MC) and the Mindanao undercurrent(MUC) and explore the relation between them on seasonal scale. In general, the MUC is composed of the lower part of the Southern Pacific Tropical Water(SPTW)and Antarctic Intermediate Water(AAIW). While the deep northward core below 1 500 m is regarded as a portion of MUC. Both salinity and potential density restrictions become more reasonable to estimate the transports of MC/MUC as the properties of water mass having been taken into consideration. The climatological annual mean transport of MC is(37.4±5.81)×10~6 m~3/s while that of MUC is(23.92±6.47)×10~6 m~3/s integrated between 26.5 σ_θ and 27.7 σ_θ, and(17.53±5.45)×10~6 m~3/s integrated between 26.5 σ_θ and 27.5 σ_θ in the OFES. The variations of MC and MUC have good positive correlation with each other on the seasonal scale: The MC is stronger in spring and weaker in fall, which corresponds well with the MUC, and the correlation coefficient of them is 0.67 in the OFES.The same variations are also appeared in hybrid coordinate ocean model(HYCOM) results. Two sensitive experiments based on HYCOM are conducted to explore the relation between MC and MUC. The MUC(26.5σ_θ27.7) is strengthening as the MC increases with the enhancement of zonal wind field. It is shown,however, that the main part of the increasement is the deeper northward high potential density water(HPDW),while the AAIW almost remains stable, SPTW decreases, and vice versa.  相似文献   

14.
The species composition, density, biomass, and distribution of zooplankton of the northeastern Sakhalin shelf, Sea of Okhotsk (Chaivo, Pil’tunskii, and Morskoi regions) were studied in October 2014. Zooplankton was represented by 15 taxonomic groups, which were dominated by Copepoda (13 species). The average density and biomass was highest in the Chaivo region (14112 ± 4322 ind./m3, 395 ± 107 mg/m3) and in the Pil’tunskii region (16692 ± 10707 ind./m3, 346 ± 233 mg/m3); the abundance of detected taxonomic groups was minimal (8–12). The average density and biomass of zooplankton was up to 4304 ± 2441 ind./m3, 133 ± 77 mg/m3 in the Morskoi region and increased with depth; the abundance of taxa was maximum (15). Four species of copepods made up the majority of the density and biomass of zooplankton: Acartia hudsonica, Eurytemora herdmani, Pseudocalanus newmani, and Oithona similis. In the Chaivo region, species of the genera Acartia, Eurytemora, and Oithona dominated and subdominated; in Pil’tunskii region, species of the genera Acartia and Oithona dominated and subdominated; and in the Morskoi region, species of the genera Oithona, Pseudocalanus, and Acartia dominated and subdominated.  相似文献   

15.
Intensive Pyropia aquaculture in the coast of southwestern Yellow Sea and its subsequent waste, including disposed Ulva prolifera, was speculated to be one of the major sources for the large-scale green tide proceeding in the Yellow Sea since 2007. It was, however, unclear how the detached U. prolifera responded and resumed growing after they detached from its original habitat. In this study, we investigated the growth and photosynthetic response of the detached U. prolifera to various temperature, salinity and irradiance in the laboratory. The photosynthetic rate of the detached U. prolifera was significantly higher at moderate temperature levels(14–27°C)and high salinity(26–32), with optimum at 23°C and 32. Both low(14°C) and highest temperature(40°C), as well as low salinity(8) had adverse effects on the photosynthesis. Compared with the other Ulva species, U. prolifera showed higher saturated irradiance and no significant photoinhibition at high irradiance, indicating the great tolerance of U. prolifera to the high irradiance. The dense branch and complex structure of floating mats could help protect the thalli and reduce photoinhibition in field. Furthermore, temperature exerted a stronger influence on the growth rate of the detached U. prolifera compared to salinity. Overall, the high growth rate of this detached U. prolifera(10.6%–16.7% d~(–1)) at a wide range of temperature(5–32°C) and salinity(14–32) implied its blooming tendency with fluctuated salinity and temperature during floating. The environmental parameters in the southwestern Yellow Sea at the beginning of green tide were coincident with the optimal conditions for the detached U. prolifera.  相似文献   

16.
The estimated characteristics of the atmospheric boundary layer, obtained by the simulation of wind wave fields using three versions of the WAM numerical model are compared with the well-known empirical dependences of drag coefficient C d on wind speed U 10 and wave age A, as well as with the dependence of dimensionless roughness height z n on inverse wave age u*/с р. Calculations carried out for several years in the areas of the Pacific and Indian oceans, based on the ERA-interim and CFSR wind reanalyses have shown good agreement between the model and empirical dependences C d (U 10) and C d (A). The range of estimated variability for z n (u*/с р ) has been found to be significantly less than empirical. It has been also found that estimated values of wind speed U 10W (t) are overestimated from 5 to 10% in all versions of WAM models compared with the input wind reanalysis U 10R (t) at the moments of appearance maximum values of wind U 10R (t). The reasons for the established features of the WAM model and their dependence on the model version are discussed.  相似文献   

17.
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10~(-7))-O(10~(-6)) W/kg and O(10~(-3))-O(10~(-2)) m~2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10~(-8)) to O(10~(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10~(-6)) to O(10~(-5)) m~2/s.In the marginal ice zone,K is vertically stable with the order of10~(-4) m~2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.  相似文献   

18.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   

19.
Among the seagrasses that occur along the coast of Korea, Zostera asiatica inhabits the deepest depth; however, to date, there is limited information on its ecology. This study presents the first quantitative data on the seasonal growth dynamics of Z. asiatica in Korea. We measured seasonal growth and morphological characteristics, as well as environmental factors, including underwater irradiance, water temperature, salinity and nutrient concentrations of the water column and sediment pore water, bimonthly from July 2012 to May 2015. Underwater irradiance showed clear seasonal trends, increasing in the spring and summer and decreasing in the fall and winter, ranging from 2.4 ± 0.2 mol photons m-2 d-1 in November 2012 to 12.8 ± 1.3 mol photons m-2 d-1 in July 2014. Water temperature also followed a strong seasonal trend similar to underwater irradiance, ranging from 9.8 ± 0.1°C in January 2013 to 20.5 ± 0.2°C in September 2013. Nutrient availability fluctuated substantially, but there was no evidence of distinct seasonal variations. Shoot density, biomass, leaf productivity, and morphological characteristics of Z. asiatica exhibited significant seasonal variations: maximum values of these variables occurred in summer, and the minima were recorded in winter. Total shoot density was highest (218.8 ± 18.8 shoots m-2) in July 2012 and lowest (106.3 ± 6.3 shoots m-2) in January 2013. Total biomass ranged from 182.6 ± 16.9 g dry weight (DW) m-2 in January 2015 to 310.9 ± 6.4 g DW m-2 in July 2014.Areal leaf production was highest (4.9 ± 0.0 g DW m-2 d-1) in July 2012 and lowest (1.4 ± 0.2 g DW m-2 d-1) in January 2013. The optimum water temperature for the growth of Z. asiatica was between 16-19°C. Growth of Z. asiatica was more strongly correlated with underwater irradiance than water temperature, suggesting that light is the most important factor determining seasonality of Z. asiatica at the study site.  相似文献   

20.
The waters of the Bering and Chukchi seas, as well as the De Long Strait, are investigated based on the data obtained in August 2013 during the scientific expedition of the Far Eastern Floating University on the research vessel Professor Khlyustin. Chlorophyll a concentrations calculated from MODIS-Aqua and VIIRS satellite data by ocean color and obtained by means of shipboard flow-through fluorometric measurements are comparatively analyzed. Vessel data are corrected for standard spectrophotometric measurements and the vertical depth distribution of phytoplankton. It has been found that, in the waters of the Eastern Arctic, satellite radiometers showed overestimated chlorophyll a concentrations in the upper seawater layer visible from the satellite. This is associated with the additional contribution of colored dissolved organic matter in the sea surface color. In the De Long Strait, satellite measurements incorrectly estimate the depth integrated chlorophyll a concentration, since the bulk of phytoplankton cells at a chlorophyll a concentration of 10–20 g/L is at depths of 25–30 m with luminosity of 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号