首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

2.
This work presents an evaluation of various methods for in situ high‐precision Sr and Pb isotopic determination in archaeological glass (containing 100–500 μg g?1 target element) by nanosecond laser ablation multi‐collector‐inductively coupled plasma‐mass spectrometry (ns‐LA‐MC‐ICP‐MS). A set of four soda‐lime silicate glasses, Corning A–D, mimicking the composition of archaeological glass and produced by the Corning Museum of Glass (Corning, New York, USA), were investigated as candidates for matrix‐matched reference materials for use in the analysis of archaeological glass. Common geological reference materials with known isotopic compositions (USGS basalt glasses BHVO‐2G, GSE‐1G and NKT‐1G, soda‐lime silicate glass NIST SRM 610 and several archaeological glass samples with known Sr isotopic composition) were used to evaluate the ns‐LA‐MC‐ICP‐MS analytical procedures. When available, ns‐LA‐MC‐ICP‐MS results for the Corning glasses are reported. These were found to be in good agreement with results obtained via pneumatic nebulisation (pn) MC‐ICP‐MS after digestion of the glass matrix and target element isolation. The presence of potential spectral interference from doubly charged rare earth element (REE) ions affecting Sr isotopic determination was investigated by admixing Er and Yb aerosols by means of pneumatic nebulisation into the gas flow from the laser ablation system. It was shown that doubly charged REE ions affect the Sr isotope ratios, but that this could be circumvented by operating the instrument at higher mass resolution. Multiple strategies to correct for instrumental mass discrimination in ns‐LA‐MC‐ICP‐MS and the effects of relevant interferences were evaluated. Application of common glass reference materials with basaltic matrices for correction of ns‐LA‐MC‐ICP‐MS isotope data of archaeological glasses results in inaccurate Pb isotope ratios, rendering application of matrix‐matched reference materials indispensable. Correction for instrumental mass discrimination using the exponential law, with the application of Tl as an internal isotopic standard element introduced by pneumatic nebulisation and Corning D as bracketing isotopic calibrator, provided the most accurate results for Pb isotope ratio measurements in archaeological glass. Mass bias correction relying on the power law, combined with intra‐element internal correction, assuming a constant 88Sr/86Sr ratio, yielded the most accurate results for 87Sr/86Sr determination in archaeological glasses  相似文献   

3.
Although initial studies have demonstrated the applicability of Ni isotopes for cosmochemistry and as a potential biosignature, the Ni isotope composition of terrestrial igneous and sedimentary rocks, and ore deposits remains poorly known. Our contribution is fourfold: (a) to detail an analytical procedure for Ni isotope determination, (b) to determine the Ni isotope composition of various geological reference materials, (c) to assess the isotope composition of the Bulk Silicate Earth relative to the Ni isotope reference material NIST SRM 986 and (d) to report the range of mass‐dependent Ni isotope fractionations in magmatic rocks and ore deposits. After purification through a two‐stage chromatography procedure, Ni isotope ratios were measured by MC‐ICP‐MS and were corrected for instrumental mass bias using a double‐spike correction method. Measurement precision (two standard error of the mean) was between 0.02 and 0.04‰, and intermediate measurement precision for NIST SRM 986 was 0.05‰ (2s). Igneous‐ and mantle‐derived rocks displayed a restricted range of δ60/58Ni values between ?0.13 and +0.16‰, suggesting an average BSE composition of +0.05‰. Manganese nodules (Nod A1; P1), shale (SDO‐1), coal (CLB‐1) and a metal‐contaminated soil (NIST SRM 2711) showed positive values ranging between +0.14 and +1.06‰, whereas komatiite‐hosted Ni‐rich sulfides varied from ?0.10 to ?1.03‰.  相似文献   

4.
The characterisation of relative copper isotope amount ratios (δ65Cu) helps constrain a variety of geochemical processes occurring in the geosphere, biosphere and hydrosphere. The accurate and precise determination of δ65Cu in matrix reference materials is crucial in the effort to validate measurement methods. With the goal of expanding the number and variety of available geological and biological materials, we have characterised the δ65Cu values of ten reference materials by MC‐ICP‐MS using C‐SSBIN model for mass bias correction. SGR‐1b (Green River shale), DOLT‐5 (dogfish liver), DORM‐4 (fish protein), TORT‐3 (lobster hepatopancreas), MESS‐4 (marine sediment) and PACS‐3 (marine sediment) have for the first time been characterised for δ65Cu. Additionally, four reference materials (with published δ65Cu values) have been characterised: BHVO‐1 (Hawaiian basalt), BIR‐1 (Icelandic basalt), W‐2a (diabase) and Seronorm? Trace Elements Serum L‐1 (human serum). The reference materials measured in this study possess complex and varied matrices with copper mass fractions ranging from 1.2 µg g?1 to 497 µg g?1 and δ65Cu values ranging from ?0.20‰ to 0.52‰ with a mean expanded uncertainty of ± 0.07‰ (U, k = 2), covering much of the natural copper isotope variability observed in the environment.  相似文献   

5.
An in situ, medium‐resolution LA‐ICP‐MS method was developed to measure the abundances of the first‐row transition metals, Ga and Ge in a suite of geological materials, namely the MPI‐DING reference glasses. The analytical protocol established here hinged on maximising the ablation rate of the ultraviolet (UV) laser system and the sensitivity of the ICP‐MS, as well minimising the production of diatomic oxides and argides, which serve as the dominant sources of isobaric interferences. Non‐spectral matrix effects were accounted for by using multiple external calibrators, including NIST SRM 610 and the USGS basaltic glasses BHVO‐2G, BIR‐1G and BCR‐2G, and utilising 43Ca as an internal standard. Analyses of the MPI‐DING reference glasses, which represent geological matrices ranging from basaltic to rhyolitic in composition, included measurements of concentrations as low as < 100 μg g?1 and as high as > 104 μg g?1. The new data reported here were found to statistically correlate with the ‘preferred’ reference values for these materials at the 95% confidence level, though with significantly better precision, typically on the order of ≤ 3% (2sm). This analytical method may be extended to any matrix‐matched geological sample, particularly oceanic basalts, silicate minerals and meteoritic materials.  相似文献   

6.
Here, we present determinations of thallium (Tl) concentrations in the USGS reference materials BIR‐1G, BHVO‐2G and BCR‐2G measured by solution ICP‐MS. The Tl content in these three glasses spans a range of about 2–230 ng g?1, which is similar to the values published for the respective powder materials. The determined range of Tl concentrations in these three glass reference materials makes them ideal for investigating Tl concentrations in basaltic and andesitic volcanic glasses. We also performed a series of laser ablation ICP‐MS measurements on the three samples, which show that this technique is able to determine Tl concentrations in glass samples with concentrations as low as 2 ng g?1.  相似文献   

7.
The low‐Sr content (generally < 100 μg g?1) in clinopyroxene from peridotite makes accurate Sr isotopic determination by LA‐MC‐ICP‐MS a challenge. The effects of adding N2 to the sample gas and using a guard electrode (GE) on instrumental sensitivity for Sr isotopic determination by LA‐MC‐ICP‐MS were investigated. Results revealed no significant sensitivity enhancement of Sr by adding N2 to the ICP. Although using a GE led to a two‐fold sensitivity enhancement, it significantly increased the yield of polyatomic ion interferences of Ca‐related ions and TiAr+ on Sr isotopes. Applying the method established in this work, 87Sr/86Sr ratios (Rb/Sr < 0.14) of natural clinopyroxene from mantle and silicate glasses were accurately measured with similar measurement repeatability (0.0009–0.00006, 2SE) to previous studies but using a smaller spot size of 120 μm and low‐to‐moderate Sr content (30–518 μg g?1). The measurement reproducibility was 0.0004 (2s, n = 33) for a sample with 100 μg g?1 Sr. Destruction of the crystal structure by sample fusion showed no effect on Sr isotopic determination. Synthesised glasses with major element compositions similar to natural clinopyroxene have the potential to be adopted as reference materials for Sr isotopic determination by LA‐MC‐ICP‐MS.  相似文献   

8.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

9.
The accurate and precise determination of Li isotopic composition by MC‐ICP‐MS suffers from the poor performance of traditional column chromatography. Previously established chromatographic processes cannot completely remove Na in complex geological samples, which is currently interpreted to be a result of Na breakthrough. In this study, Na breakthrough during single‐column purification was found to differ between simply artificial Na‐containing sample solutions, where a little Na residue was found, and silicate rocks, where a large amount of breakthrough occurred. A revised two‐step column purification for Li using 0.5 and 0.3 mol l?1 HCl as eluents was designed to remove the Na. This modified method achieves high‐efficiency Li purification from Na and consequently avoiding high Na/Li ratio interference for subsequent MC‐ICP‐MS analyses. The proposed method was validated by the analysis of a series of reference materials, including Li2CO3 (IRMM‐016, ‐0.10‰), basalt (BCR‐2: 2.68‰; BHVO‐2: 4.39‰), andesite (AGV‐2: 6.46‰; RGM‐2: 2.59‰), granodiorite (GSP‐2: ?0.87‰) and seawater (CASS‐5, 30.88‰). This work reports early Na appearance prior to the elution curves in chromatography and emphasises its influence for subsequent Li isotope measurement. Based on the findings, the established two‐step method would be more secure than single‐column chemistry for Li purification.  相似文献   

10.
We report here an optimisation of the demountable direct injection high efficiency nebuliser (d‐DIHEN) for isotopic measurements with a Neptune (ThermoFisher Scientific, Bremen, Germany) multi‐collector inductively coupled plasma‐mass spectrometer (MC‐ICP‐MS) and describe a method for boron isotopic ratio determination. With direct injection nebulisation 100% of the analyte was introduced into the ICP‐MS plasma and wash times were drastically reduced for elements such as boron and thorium. Compared to the classical stable introduction system (SIS: double Scott/cyclonic spray chamber), sensitivity for boron was 2–5 times higher with d‐DIHEN and wash times up to ten times shorter. Repeatability of 11B/10B sample‐calibrator bracketing measurements reached 0.25‰ (2s) for seawater and coral samples. Method accuracy and reproducibility were tested on mixed reference solutions having δ11B values in the ranges ?90 to +40‰ and ?2 to +2.5‰, demonstrating our ability to distinguish δ11B values with differences of only 0.25‰. The international seawater reference material NRCC NASS‐5 (National Research Council, Ottawa, Canada), analysed in different sessions over a 10‐month period, yielded an average δ11B value of +39.89 ± 0.25‰, in the upper range of previously published seawater values. A comparison between δ11B determined by d‐DIHEN MC‐ICP‐MS and positive‐TIMS (P‐TIMS) for four modern corals showed an excellent agreement (with bias of less than 0.4‰).  相似文献   

11.
Two large pegmatitic crystals of sodic pyroxene (aegirine) and sodic amphibole (arfvedsonite) from the agpaitic igneous Ilímaussaq Complex, south Greenland were found to be suitable as reference materials for in situ Li isotope determinations. Lithium concentrations determined by SIMS and micro‐drilled material analysed by MC‐ICP‐MS generally agreed within analytical uncertainty. The arfvedsonite crystal was homogeneous with [Li] = 639 ± 51 μg g?1 (2s, n = 69, MC‐ICP‐MS and SIMS results). The aegirine crystal shows strongly developed sector zoning, which is a common feature of aegirines. Using qualitative element mapping techniques (EPMA), the homogeneous core of the crystal was easily distinguished from the outermost sectors of the crystals. The core had a mean [Li] of 47.6 ± 3.6 μg g?1 (2s, n = 33) as determined by SIMS. The seven micro‐drilled regions measured by solution MC‐ICP‐MS returned slightly lower concentrations (41–46 μg g?1), but still overlap with the SIMS data within uncertainty. Based on MC‐ICP‐MS and SIMS analyses, the variation in δ7Li was about 1‰ in each of the two crystals, which is smaller than that in widely used glass reference materials, making these two samples suitable to serve as reference materials. There was, however, a significant offset between the results of MC‐ICP‐MS and SIMS. The latter deviated from the MC‐ICP‐MS results by ?6.0 ± 1.9‰ (2s) for the amphibole and by ?3.9 ± 1.9‰ (2s) for the aegirine. This indicates the presence of a significant matrix effect in SIMS determinations of Li isotopes for amphibole and pyroxene relative to the basalt glasses used for calibration. Based on the MC‐ICP‐MS results, mean δ7Li values of +0.7 ± 1.2‰ (2s, n = 10) for the arfvedsonite crystal and of ?3.7 ± 1.2‰ (2s, n = 7) for the core of the aegirine crystal were calculated. Adopting these values, SIMS users can correct for the specific IMF (instrumental mass fractionation) of the ion probe used. We propose that these two crystals serve as reference materials for in situ Li isotope determinations by SIMS and pieces of these two crystals are available from the first author upon request.  相似文献   

12.
The influence of ablation cell geometry (Frames single‐ and HelEx two‐volume cells) and laser wavelength (198 and 266 nm) on aerosols produced by femtosecond laser ablation (fs‐LA) were evaluated. Morphologies, iron mass distribution (IMD) and 56Fe/54Fe ratios of particles generated from magnetite, pyrite, haematite and siderite were studied. The following two morphologies were identified: spherules (10–200 nm) and agglomerates (5–10 nm). Similarity in IMD and ablation rate at 198 and 266 nm indicates similar ablation mechanisms. 56Fe/54Fe ratios increased with aerodynamic particle size as a result of kinetic fractionation during laser plasma plume expansion, cooling and aerosol condensation. The HelEx cell produces smaller particles with a larger range of 56Fe/54Fe ratios (1.85‰) than particles from the Frames cell (1.16‰), but the bulk aerosol matches the bulk substrate for both cells, demonstrating stoichiometric fs‐LA sampling. IMD differences are the result of faster wash out of the HelEx cell allowing less time for agglomeration of small, low‐δ 56Fe particles with larger, high‐δ 56Fe particles in the cell. Even with a shorter ablation time, half the total Fe ion intensity, and half the ablation volume, the HelEx cell produced Fe isotope determinations for magnetite that were as precise as the Frames cell, even when the latter included an aerosol‐homogenising mixing chamber. The HelEx cell delivered a more constant stream of small particles to the ICP, producing a more stable Fe ion signal (0.7% vs. 1.5% RSE for 56Fe in a forty‐cycle single analysis), constant instrumental mass bias and thus a more precise measurement.  相似文献   

13.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

14.
The commonly used, but no longer available, reference materials NIST SRM 976 (Cu) and ‘JMC Lyon’ (Zn) were calibrated against the new reference materials ERM®‐AE633, ERM®‐AE647 (Cu) and IRMM‐3702 (Zn), certified for isotope amount ratios. This cross‐calibration of new with old reference materials provides a continuous and reliable comparability of already published with future Cu and Zn isotope data. The Cu isotope amount ratio of NIST SRM 976 yielded δ65/63Cu values of ?0.01 ± 0.05‰ and ?0.21 ± 0.05‰ relative to ERM®‐AE633 and ERM®‐AE647, respectively, and a δ66/64ZnIRMM‐3702 value of ?0.29 ± 0.05‰ was determined for ‘JMC Lyon’. Furthermore, we separated Cu and Zn from five geological reference materials (BCR‐2, BHVO‐2, BIR‐1, AGV‐1 and G‐2) using a two‐step ion‐exchange chromatographic procedure. Possible isotope fractionation of Cu during chromatographic purification and introduction of resin‐ and/or matrix‐induced interferences were assessed by enriched 65Cu isotope addition. Instrumental mass bias correction for the isotope ratio determinations by MC‐ICP‐MS was performed using calibrator‐sample bracketing with internal Ni doping for Cu and a double spike approach for Zn. Our results for the five geological reference materials were in very good agreement with literature data, confirming the accuracy and applicability of our analytical protocol.  相似文献   

15.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

16.
We present in this article a rapid method for B extraction, purification and accurate B concentration and δ11B measurements by ID‐ICP‐MS and MC‐ICP‐MS, respectively, in different vegetation samples (bark, wood and tree leaves). We developed a rapid three‐step procedure including (1) microwave digestion, (2) cation exchange chromatography and (3) microsublimation. The entire procedure can be performed in a single working day and has shown to allow full B recovery yield and a measurement repeatability as low as 0.36‰ (± 2s) for isotope ratios. Uncertainties mostly originate from the cation exchange step but are independent of the nature of the vegetation sample. For δ11B determination by MC‐ICP‐MS, the effect of chemical impurities in the loading sample solution has shown to be critical if the dissolved load exceeds 5 μg g?1 of total salts or 25 μg g?1 of DOC. Our results also demonstrate that the acid concentration in the sample loading solution can also induce critical isotopic bias by MC‐ICP‐MS if chemistry of the rinsing‐, bracketing calibrator‐ and sample solutions is not thoroughly adjusted. We applied this method to provide a series of δ11B values of vegetal reference materials (NIST SRM 1570a = 25.74 ± 0.21‰; NIST 1547 = 40.12 ± 0.21‰; B2273 = 4.56 ± 0.15‰; BCR 060 = ?8.72 ± 0.16‰; NCS DC73349 = 16.43 ± 0.12‰).  相似文献   

17.
This study presents a high‐precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W‐X12, 200–400 mesh). Barium isotopes were measured by MC‐ICP‐MS, using a 135Ba–136Ba double‐spike to correct mass‐dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp‐1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean δ137/134Ba values of JCp‐1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s,= 16) and 0.02 ± 0.03‰ (2s,= 6), respectively. Replicate measurements of NIST SRM 915b, COQ‐1, natural coral and stalagmite samples gave average δ137/134Ba values of 0.10 ± 0.04‰ (2s,= 18), 0.08 ± 0.04‰ (2s,= 20), 0.27 ± 0.04‰ (2s,= 16) and 0.04 ± 0.03‰ (2s,= 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.  相似文献   

18.
We report homogeneity tests on large natural apatite crystals to evaluate their potential as U reference materials for apatite fission‐track (AFT) thermochronology by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). The homogeneity tests include the measurements of major element concentrations by electron probe microanalysis (EPMA), whereas for U concentration, isotope dilution (ID) ICP‐MS and laser ablation (LA) ICP‐MS were employed. Two apatite crystals are potential reference materials for LA‐ICP‐MS analysis: a 1 cm3 fraction of a Durango crystal (7.5 μg g?1 U) and a 1 cm3 Mud Tank crystal (6.9 μg g?1 U). The relative standard deviation (1 RSD) of the U concentration determined by ID‐ICP‐MS of both apatite crystals was ≤ 1.5%, whereas 1 RSD for the LA‐ICP‐MS results was better than 4%, providing sufficient homogeneity for fission‐track dating. The results on the U homogeneity for two different apatite samples are an important step towards establishing in situ dating routines for AFT analysis by LA‐ICP‐MS.  相似文献   

19.
Silicon isotope determination of sulfur‐rich samples by MC‐ICP‐MS can be challenging because cation‐exchange chromatography used for Si purification does not efficiently remove anionic sulfur species. Results for pure Si standard solutions with addition of sulfate showed shifts of up to +1.04 ± 0.10‰ (2s) in δ30Si. Doping of both standard solutions and samples with S to a fixed S/Si ratio can eliminate the relative change in instrumental mass fractionation due to variable S/Si in samples and also boosts the relative sensitivity of Si by up to 66%. Moreover, Fe hydroxide precipitation during sample processing adsorbs Si resulting in isotopic fractionations. Tests using Fe‐rich samples showed that this could be a major factor for observed shifts in δ30Si. Acidification of the sample and standard solutions to a pH < 1 aggressively dissolved any Fe hydroxide precipitates, even in relatively Fe‐rich samples such as chondrite meteorites. The pH values of the sample solutions were subsequently adjusted to a range of 2–3 by adding ultra‐pure NaOH solutions. The combination of sulfur doping and the pH adjustment protocol ensured a full recovery of Si and proved to be an efficient and reliable method for Si isotope determination of S‐ and Fe‐rich materials.  相似文献   

20.
LA‐ICP‐MS is one of the most promising techniques for in situ analysis of geological and environmental samples. However, there are some limitations with respect to measurement accuracy, in particular for volatile and siderophile/chalcophile elements, when using non‐matrix‐matched calibration. We therefore investigated matrix‐related effects with a new 200 nm femtosecond (fs) laser ablation system (NWRFemto200) using reference materials with different matrices and spot sizes from 10 to 55 μm. We also performed similar experiments with two nanosecond (ns) lasers, a 193 nm excimer (ESI NWR 193) and a 213 nm Nd:YAG (NWR UP‐213) laser. The ion intensity of the 200 nm fs laser ablation was much lower than that of the 213 nm Nd:YAG laser, because the ablation rate was a factor of about 30 lower. Our experiments did not show significant matrix dependency with the 200 nm fs laser. Therefore, a non‐matrix‐matched calibration for the multi‐element analysis of quite different matrices could be performed. This is demonstrated with analytical results from twenty‐two international synthetic silicate glass, geological glass, mineral, phosphate and carbonate reference materials. Calibration was performed with the certified NIST SRM 610 glass, exclusively. Within overall analytical uncertainties, the 200 nm fs LA‐ICP‐MS data agreed with available reference values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号