首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IPCC共享社会经济路径下中国和分省人口变化预估   总被引:3,自引:0,他引:3  
基于2010年第六次中国人口普查数据,采用IPCC发布的可持续发展(SSP1)、中度发展(SSP2)、局部或不一致发展(SSP3)、不均衡发展(SSP4)、常规发展(SSP5)这5种共享社会经济路径,率定人口-发展-环境分析(PDE)模型中的人口生育率、死亡率、迁移率、教育水平等参数,对2011-2100年中国和31个省(区/市)人口变化进行预估。结果表明:1) 不同SSP路径下,中国人口均呈先增加后减少的趋势,在高气候变化挑战的SSP3路径下人口最多,于2035年达到峰值,约14.27亿;在以适应挑战为主的SSP4路径下,人口出现最小值7.02亿。2) SSP1、SSP4和SSP5路径下人均寿命长,人口老龄化严重,其中SSP1和SSP5路径下人均教育水平高,到2100年教育水平在大学以上人口约占总人口的60%;SSP2路径下各年龄段分布比较均衡;SSP3路径下新生人口数量较多,劳动力充足,但教育水平较低。3) 到2100年,SPP3路径下广西人口呈现最大值1.13亿,在其他路径下广东人口最多,达1.29亿。  相似文献   

2.
中国城镇和乡村住房建筑地震设防水平差距较大,暴露在低设防农村与高密集城镇下的人口因此面临较高的地震风险,面向地震设防风险分析未来城乡人口及暴露特征具有重要意义。本文基于地震烈度区划图和人口-发展-环境(PDE)模型,模拟分析了5种共享社会经济路径(SSPs)情景下的未来城乡人口地震灾害时空暴露。结果表明:(1)除SSP3下城镇人口数量持续增加外,其他SSP情景下各地区城镇人口数量均先增后降,农村人口数量受城镇化影响呈持续下降趋势;(2)城镇与农村地震灾害高、较高人口暴露等级空间分布相似,集中在华北、西南与东部沿海地区;(3)相较于有设防的城镇地区,无设防农村地震人口暴露等级偏高,高暴露、较高暴露等级的数量偏多,未来城镇人口暴露等级有所上升,而农村人口暴露等级逐渐降低。  相似文献   

3.
This paper applies the methods of multi-dimensional mathematical demography to project national populations based on alternative assumptions on future, fertility, mortality, migration and educational transitions that correspond to the five shared socioeconomic pathways (SSP) storylines. In doing so it goes a significant step beyond past population scenarios in the IPCC context which considered only total population size. By differentiating the human population not only by age and sex—as is conventionally done in demographic projections—but also by different levels of educational attainment the most fundamental aspects of human development and social change are being explicitly addressed through modeling the changing composition of populations by these three important individual characteristics. The scenarios have been defined in a collaborative effort of the international Integrated Assessment Modeling community with the medium scenario following that of a major new effort by the Wittgenstein Centre for Demography and Global Human Capital (IIASA, OEAW, WU) involving over 550 experts from around the world. As a result, in terms of total world population size the trajectories resulting from the five SSPs stay very close to each other until around 2030 and by the middle of the century already a visible differentiation appears with the range between the highest (SSP3) and the lowest (SSP1) trajectories spanning 1.5 billion. The range opens up much more with the SSP3 reaching 12.6 billion in 2100 and SSP1 falling to 6.9 billion which is lower than today's world population.  相似文献   

4.
社会经济发展道路的选择影响城乡发展模式,带来城市和农村人口新的分布格局.本文基于IPCC共享社会经济路径(SSPs)框架,采用第六次中国人口普查数据,综合考虑中国人口政策和迁移规律,对人口-发展-环境分析模型(PDE)中的生育率、死亡率和迁移率参数进行本地化处理,开展5种SSPs路径下的中国及分省(区、市)城乡人口预估研究,并分析其变化的主要影响因素.结果表明:1)5种SSPs路径下中国城市人口均有所增加,2015-2050年增长3.4(2.2~3.7)亿人;农村人口持续降低,减少约3.0(1.1~4.0)亿人;到2050年中国城市化率将达到79%(67%~86%).2)未来中国大部分省份城市人口都将较2015年有所增加,西部省份的增长速度高于东部省份;所有省份农村人口都将明显减少,东部地区农村人口减少幅度高于西部地区.相比2015年,2050年西藏、新疆等地城市人口最多可增加两倍以上;大部分省(区、市)农村人口可减少60%以上.3)未来大部分路径下自然变动对城市和农村人口均由正的影响逐渐变为负影响;机械变动对城市人口影响为正,对农村人口影响为负,影响程度逐渐减小.人口自然变动在东西部省份的差异是导致东西部城乡人口不同变化的主要因素.  相似文献   

5.
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.  相似文献   

6.
Global GDP projections for the 21st century are needed for the exploration of long-term global environmental problems, in particular climate change. Greenhouse gas emissions as well as climate change mitigation and adaption capacities strongly depend on growth of per capita income. However, long-term economic projections are highly uncertain. This paper provides five new long-term economic scenarios as part of the newly developed shared socio-economic pathways (SSPs) which represent a set of widely diverging narratives. A method of GDP scenario building is presented that is based on assumptions about technological progress, and human and physical capital formation as major drivers of long-term GDP per capita growth. The impact of these drivers differs significantly between different shared socio-economic pathways and is traced back to the underlying narratives and the associated population and education scenarios. In a highly fragmented world, technological and knowledge spillovers are low. Hence, the growth impact of technological progress and human capital is comparatively low, and per capita income diverges between world regions. These factors play a much larger role in globalization scenarios, leading to higher economic growth and stronger convergence between world regions. At the global average, per capita GDP is projected to grow annually in a range between 1.0% (SSP3) and 2.8% (SSP5) from 2010 to 2100. While this covers a large portion of variety in future global economic growth projections, plausible lower and higher growth projections may still be conceivable. The GDP projections are put into the context of historic patterns of economic growth (stylized facts), and their sensitivity to key assumptions is explored.  相似文献   

7.
长江口海平面上升预测及其对滨海湿地影响   总被引:1,自引:0,他引:1  
选择吴淞站和吕四站2个验潮站数据,通过统计学方法进行长江口海平面上升预测,从而构建了一套长江口地区较完备的海平面上升情景库:以2013年为基准年份,其最佳预测值的范围在2030年、2050年、2100年分别为50~217 mm,118~430 mm,256~1215 mm。以此情景库为基础,探究海平面上升变化对长江口滨海湿地的影响,结果表明:随着海平面上升值的增加,长江口滨海湿地的面积不断减少;在基于验潮站数据作趋势外推得到的情景下,湿地面积减少较平缓,而在考虑全球变暖背景的情景下,湿地面积减少迅速;且不论在何种情景下,时间尺度越大,湿地减少的面积越大。  相似文献   

8.
根据IPCC提出的共享社会经济路径(SSPs),本文以中国14个乡村振兴核心区为研究区,结合中国当前人口特征设定不同SSPs路径下本地化人口预估参数,采用人口—发展—环境(PDE)模型,预估2020~2040年人口变化特征.结合SSPs-RCPs情景下多模式的干旱评估结果,探讨未来乡村振兴核心区干旱暴露人口较基准期(1...  相似文献   

9.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

10.
Reducing hunger while staying within planetary boundaries of pollution, land use and fresh water use is one of the most urgent sustainable development goals. It is imperative to understand future food demand, the agricultural system, and the interactions with other natural and human systems. Studying such interactions in the long-term future is often done with Integrated Assessment Modelling. In this paper we develop a new food demand model to make projections several decades ahead, having 46 detailed food categories and population segmented by income and urban vs rural. The core of our model is a set of relationships between income and dietary patterns, with differences between regions and income inequalities within a region. Hereby we take a different, more long-term-oriented approach than elasticity-based macro-economic models (Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models). The physical and detailed nature of our model allows for fine-grained scenario exploration. We first apply the model to the newly developed Shared Socio-economic Pathways (SSP) scenarios, and then to additional sustainable development scenarios of food waste reduction and dietary change. We conclude that total demand for crops and grass could increase roughly 35–165% between 2010 and 2100, that this future demand growth can be tempered more effectively by replacing animal products than by reducing food waste, and that income-based consumption inequality persists and is a contributing factor to our estimate that 270 million people could still be undernourished in 2050.  相似文献   

11.
A global ranking of port cities with high exposure to climate extremes   总被引:5,自引:1,他引:4  
This paper presents a first estimate of the exposure of the world’s large port cities (population exceeding one million inhabitants in 2005) to coastal flooding due to sea-level rise and storm surge now and in the 2070s, taking into account scenarios of socio-economic and climate changes. The analysis suggests that about 40 million people (0.6% of the global population or roughly 1 in 10 of the total port city population in the cities considered) are currently exposed to a 1 in 100 year coastal flood event. For assets, the total value exposed in 2005 across all cities considered is estimated to be US$3,000 billion; corresponding to around 5% of global GDP in 2005 (both measured in international USD) with USA, Japan and the Netherlands being the countries with the highest values. By the 2070s, total population exposed could grow more than threefold due to the combined effects of sea-level rise, subsidence, population growth and urbanisation with asset exposure increasing to more than ten times current levels or approximately 9% of projected global GDP in this period. On the global-scale, population growth, socio-economic growth and urbanization are the most important drivers of the overall increase in exposure particularly in developing countries, as low-lying areas are urbanized. Climate change and subsidence can significantly exacerbate this increase in exposure. Exposure is concentrated in a few cities: collectively Asia dominates population exposure now and in the future and also dominates asset exposure by the 2070s. Importantly, even if the environmental or socio-economic changes were smaller than assumed here the underlying trends would remain. This research shows the high potential benefits from risk-reduction planning and policies at the city scale to address the issues raised by the possible growth in exposure.  相似文献   

12.
Toward a physically plausible upper bound of sea-level rise projections   总被引:3,自引:1,他引:2  
Anthropogenic sea-level rise (SLR) causes considerable risks. Designing a sound SLR risk-management strategy requires careful consideration of decision-relevant uncertainties such as the reasonable upper bound of future SLR. The recent Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment reported a likely upper SLR bound in the year 2100 near 0.6 m (meter). More recent studies considering semi-empirical modeling approaches and kinematic constraints on glacial melting suggest a reasonable 2100 SLR upper bound of approximately 2 m. These recent studies have broken important new ground, but they largely neglect uncertainties surrounding thermal expansion (thermosteric SLR) and/or observational constraints on ocean heat uptake. Here we quantify the effects of key parametric uncertainties and observational constraints on thermosteric SLR projections using an Earth system model with a dynamic three-dimensional ocean, which provides a mechanistic representation of deep ocean processes and heat uptake. Considering these effects nearly doubles the contribution of thermosteric SLR compared to previous estimates and increases the reasonable upper bound of 2100 SLR projections by 0.25 m. As an illustrative example of the effect of overconfidence, we show how neglecting thermosteric uncertainty in projections of the SLR upper bound can considerably bias risk analysis and hence the design of adaptation strategies. For conditions close to the Port of Los Angeles, the 0.25 m increase in the reasonable upper bound can result in a flooding-risk increase by roughly three orders of magnitude. Results provide evidence that relatively minor underestimation of the upper bound of projected SLR can lead to major downward biases of future flooding risks.  相似文献   

13.
《巴黎协定》正式生效, 为国际社会应对气候变化提出新的机遇与挑战,也必将对中国人口、资源和环境带来重要影响。本文结合IPCC发布的可持续发展(SSP1)、中度发展(SSP2)、局部或不一致发展(SSP3)、不均衡发展(SSP4)、常规发展(SSP5)5种共享社会经济路径,以2010年中国第六次人口普查数据为基准,综合考虑人口现状和发展政策设定不同发展路径下各省人口模型的相关参数,在全球升温控制在1.5℃和2.0℃时,对比研究中国和各省分年龄、性别、教育水平的人口演变和分布特征。结果表明:(1)全球升温1.5℃时,SSP1和SSP4路径下总人口较2010年增加0.44亿人;升温2.0℃时,SSP2和SSP3路径下较2010年分别增加0.23亿和0.67亿人,SSP5路径下减少约0.12亿人。5种路径下中国人口将在2025-2035年达到峰值,人口峰值正处于全球升温1.5℃期间。(2)全球升温1.5℃时,除了东北地区和四川、安徽省外,多数省(市)人口均较2010年有所增加;升温2.0℃时,西北、西南和以东南沿海地区为主的发达省份保持较高的人口增量,其他地区人口开始呈减少趋势。(3)在全球升温1.5℃和2.0℃期间,大部分省份人口达到峰值,其中SSP3路径下广西人口最多,可达1.13亿,其他路径下广东省人口最多,达1.53亿。(4)未来中国65岁以上老龄人口比重呈现东北高、西南低的分布特征。与全球升温1.5℃相比,升温2.0℃时的老龄化趋势进一步加重,东北地区老龄化问题最严重。采用绿色和可持续发展路径,全球升温控制在2.0℃之内是中国社会经济发展的科学选择。  相似文献   

14.
INFORM Risk Index is a global indicator-based disaster risk assessment tool that combines hazards, exposure, vulnerability and lack of coping capacity indicators with the purpose to support humanitarian crisis management decisions considering the current climate and population. In this exploratory study, we extend the Index to include future climate change and population projections using RCP 8.5 climate projections of coastal flood, river flood and drought, and SSP3 and SSP5 population projections for the period 2036 to 2065. For the three hazards considered, annually 1.3 billion people (150% increase), 1.8 billion people (249% increase) and 1.5 billion people (197% increase) in the mid-21st century are projected to be exposed under the 2015, SSP3 and SSP5 population estimates, respectively. Drought shows the highest exposure levels followed by river flood and then coastal flood, with some regional differences. The largest exposed population is projected in Asia, while the largest percent changes are projected in Africa and Oceania. Countries with largest current and projected risk including non-climatic factors are generally located in Africa, West and South Asia and Central America. An uncertainty analysis of the extended index shows that it is generally robust and not influenced by the methodological choices. The projected changes in risk and coping capacity (vulnerability) due to climate change are generally greater than those associated with population changes. Countries in Europe, Western and Northern Asia and Africa tend to show higher reduction levels in vulnerability (lack of coping capacity) required to nullify the adverse impacts of the projected amplified hazards and exposure. The required increase in coping capacity (decreased vulnerability) can inform decision-making processes on disaster risk reduction and adaptation options to maintain manageable risk levels at global and national scale. Overall, the extended INFORM Risk Index is a means to integrate Disaster Risk Reduction and Climate Change Adaptation policy agendas to create conditions for greater policy impact, more efficient use of resources and more effective action in protecting life, livelihoods and valuable assets.  相似文献   

15.
Coastal sector impacts from sea level rise (SLR) are a key component of the projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate global costs to coastal resources will depend strongly on adaptation, society’s response to cope with the local impacts. This paper presents a new open-source optimization model to assess global coastal impacts from SLR from the perspective of economic efficiency. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al. 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain sea level extremes. A deterministic application of CIAM demonstrates the model’s ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several climate scenarios that account for both global and local components of SLR (Kopp et al. 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs through 2100 by a factor of seven to less than $1.7 trillion, although this does not include initial transition costs to overcome an under-adapted current state. In addition to producing aggregate estimates, CIAM results can also be interpreted at the local level, where retreat (e.g., relocate inland) is often a more cost-effective adaptation strategy than protect (e.g., construct physical defenses).  相似文献   

16.
Urbanization and climate change are among the most important global trends affecting human well-being during the twenty-first century. One region expected to undergo enormous urbanization and be significantly affected by climate change is Africa. Studies already find increases in temperature and high temperature events for the region. How many people will be exposed to heat events in the future remains unclear. This paper attempts to provide a first estimate of the number of African urban residents exposed to very warm 15-day heat events (>42 °C). Using the Shared Socio-economic Pathways and Representative Concentration Pathways framework we estimate the numbers of exposed, sensitive (those younger than 5 and older than 64 years), and those in low-income nations, with gross national products of $4000 ($2005, purchasing power parity), from 2010 to 2100. We examine heat events both with and without urban heat island estimates. Our results suggest that at the low end of the range, under pathways defined as sustainable (SSP 1) and low relative levels of climate change (RCP 2.6) without including the urban heat island effect there will be large populations (>300 million) exposed to very warm heat wave by 2100. Alternatively, by 2100, the high end exposure level is approximately 2.0 billion for SSP 4 under RCP 4.5 where the urban heat island effect is included.  相似文献   

17.
Protected areas (PAs) are the most effective tools to protect biodiversity and ecosystem services. They have proven to be effective in stopping extensive land use conversion in well-conserved terrestrial ecosystems. However, land cover changes around PAs threaten biodiversity and ecosystem services within their limits and reduce ecological connectivity. In this study, we analysed the urban sprawls on the boundaries of 159 PAs (national, regional, and natural parks) in Spain, using 2.5 and 5 km non-protected buffer zones from 1990 to 2018. We clustered PAs based on biophysical and socio-economic characteristics and modelled urban sprawl in different buffers and periods. Hierarchical clustering revealed three groups of PAs: (a) proximate urban parks, (b) mountainous parks, and (c) parks in the Madrid autonomous region. We found that urbanisation in the surroundings of PAs in Spain has nearly doubled since 1990. General linear models explained a significant proportion of the urbanisation trends observed, with the number of municipalities in the boundary of the PA, the distance to a main road, and the distance to a big city acting as the most important drivers of urban sprawl. Our results also show that some PAs exert significant effects on urbanisation trends in their surroundings through the park-view effect. Finally, we highlight three coexisting phenomena that might explain the observed urban sprawl processes: (a) PAs attracting urbanisation in their surroundings due to the park-view effect, (b) PAs as a deterrent for urban sprawl within their limits, and (c) PAs occupying residual areas among previously urbanised lands.  相似文献   

18.
基于不同共享社会经济路径(Shared Socioeconomic Pathways, SSPs)形成的8组最新的未来可能情景(SSPx-y情景),被用于第六次耦合模式比较计划(CMIP6),以据此来预估未来气候变化的可能幅度和趋势。本文主要对比分析了8组SSPx-y新情景中主要温室气体和气溶胶排放数据的基准年排放强度分布、未来排放强度的时空变化、以及在6个典型区域排放强度的逐年变化等特征。结果表明:二氧化碳(CO2)、甲烷(CH4)、黑碳(BC)、二氧化硫(SO2)在基准年的排放强度高值区都位于东亚和南亚。相比于基准年,2100年CO2和CH4在高和低辐射强迫情景下表现出的排放强度变化有显著差异。此外,所有情景下2100年的BC和SO2全球平均排放强度都弱于基准年的排放强度。在时间变化上,随着生物质能碳捕获与封存技术的不断进步,所有地区在4组不超过3.4 W/m2的低辐射强迫情景下,CO2排放强度到2100年都呈现负值。其中,南美洲的负排放最强,2100年在SSP5-3.4情景下该地区的排放强度为-0.3 kg m-2 a-1。最后,对比东亚和南亚排放强度的逐年变化可以发现,在各情景所描述的未来发展过程中,东亚的减排行动的成效都要好于南亚。  相似文献   

19.
Recently published work estimates that global sea level rise (SLR) approaching or exceeding 1 m by 2100 is plausible, thus significantly updating projections by the Fourth Assessment of the Intergovernmental Panel on Climate Change. Furthermore, global greenhouse gas (GHG) emissions over the 21st century will not only influence SLR in the next ??90 years, but will also commit Earth to several meters of additional SLR over subsequent centuries. In this context of worsening prospects for substantial SLR, we apply a new geospatial dataset to calculate low-elevation areas in coastal cities of the conterminous U.S.A. potentially impacted by SLR in this and following centuries. In total, 20 municipalities with populations greater than 300,000 and 160 municipalities with populations between 50,000 and 300,000 have land area with elevations at or below 6 m and connectivity to the sea, as based on the 1 arc-second National Elevation Dataset. On average, approximately 9% of the area in these coastal municipalities lies at or below 1 m. This figure rises to 36% when considering area at or below 6 m. Areal percentages of municipalities with elevations at or below 1?C6 m are greater than the national average along the Gulf and southern Atlantic coasts. In contrast to the national and international dimensions of and associated efforts to curb GHG emissions, our comparison of low-elevation areas in coastal cities of the conterminous U.S.A. clearly shows that SLR will potentially have very local, and disproportionate, impacts.  相似文献   

20.
IPCC第六次评估报告第一工作组报告第九章综合评估了与海平面相关的最新监测和数值模拟结果,指出目前(2006—2018年)的海平面上升速率处于加速状态(3.7 mm/a),并会在未来持续上升,且呈现不可逆的趋势。其中低排放情景(SSP1-1.9)和高排放情景(SSP5-8.5)下,到2050年,预估全球平均海平面(GMSL)分别上升0.15~0.23 m和0.20~0.30 m;到2100年,预估GMSL分别上升0.28~0.55 m和0.63~1.02 m。南极冰盖不稳定性是影响未来海平面上升预估的最大不确定性来源之一。区域海平面变化是影响沿海极端静水位的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号