首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Investigation of lake drying attributed to climate change   总被引:1,自引:1,他引:0  
In recent decades, climate change has been of great concern due to its effect on water level and its impact on aquatic ecosystems. Urmia Lake, the largest inland wetland in Iran, has been shrinking. There is a great concern whether it will dry up like the Aral Sea. Therefore, a hydrodynamic model has been developed to simulate the condition of Urmia Lake. The model has been validated using the known annual data on precipitation, evaporation, run off, river discharges and water level which are available for the last 35?years. Different hydrological conditions regarding lake input and output data were tested and water depth was calculated using bathymetry to predict water-level fluctuations in the future. The results predict that the water level will decrease continuously. The lake will be dried up in about 10?years if very dry conditions continue in the region. The drought speed cannot be reduced and there is no potential to develop a water-usage program. Besides, the lake water depth decrease is more slightly, applying alternate wet and dry-period conditions. In some hydrological conditions there is a good potential to consider water development projects. The sensitivity analysis of different parameters indicates that the lake is highly sensitive to river discharges, which implies that the water development project plans will disturb the lake ecosystem if implemented up to 2021 and integrated watershed management plan for the lake can change the condition by regulating the dam output.  相似文献   

2.
Lake Balkhash is the third largest inland lake in Central Asia after the Caspian Sea and the Aral Sea. The Ili River-Balkash Lake Basin resides in the southeastern part of the Republic of Kazakhstan and the western part of China's Ili Prefecture, which belongs to the arid and semi-arid region. In the middle to late 20th century, the Ili River-Balkash Lake Basin was affected by climate change and human activities, and the problems of water ecology and water resources became increasingly prominent, which became the focus of attention for China and Kazakhstan. In this study, the water level derived from radar altimeter data, the water surface area extracted from Landsat data, and the temperature and precipitation data in the basin were comprehensively utilised. Data analysis of the time course and correlation of hydrological, meteorological elements in the lake basin, water dynamic changes, and influencing factors of Lake Balkhash was studied. The results show that the cyclical change of regional climate is the main factor affecting the change of lake water, and human activities in the short term can regulate the change of water volume in Lake Balkhash. The research results in this paper can provide a scientific basis for the solution of water disputes in cross-border rivers between China and Kazakhstan.  相似文献   

3.
Lake Balkhash is the third largest inland lake in Central Asia after the Caspian Sea and the Aral Sea.The Ili River-Balkash Lake Basin resides in the southeastern part of the Republic of Kazakhstan and the western part of China's Ili Prefecture,which belongs to the arid and semi-arid region.In the middle to late 20thcentury,the Ili River-Balkash Lake Basin was affected by climate change and human activities,and the problems of water ecology and water resources became increasingly prominent,which became the focus of attention for China and Kazakhstan.In this study,the water level derived from radar altimeter data,the water surface area extracted from Landsat data,and the temperature and precipitation data in the basin were comprehensively utilised.Data analysis of the time course and correlation of hydrological,meteorological elements in the lake basin,water dynamic changes,and influencing factors of Lake Balkhash was studied.The results show that the cyclical change of regional climate is the main factor affecting the change of lake water,and human activities in the short term can regulate the change of water volume in Lake Balkhash.The research results in this paper can provide a scientific basis for the solution of water disputes in cross-border rivers between China and Kazakhstan.  相似文献   

4.
Data reduction methods such as principal components analysis and factor analysis can be used to define drought prone areas of a basin. In this study, factor analysis method applied for the purpose of projecting the information space on the few dominant axes. The main aim of this study is regionalization of Lake Urmia Basin from the view of drought using factor analysis. For this purpose, monthly precipitation data of 30 weather stations in the period 1972–2009 were used. For each of the selected stations, 3- and 12-month Standardized Precipitation Index (SPI) values were calculated. Factor analysis conducted on SPI values to delineate the study area with respect to drought characteristics. Homogeneity of obtained regions tested using the S statistics proposed by Wiltshire. Results of factor analysis of 3- and 12-month SPI values showed that 5 (6) factors having eigenvalues >1 accounted for 68.08 (78.88) % of total variance. The Lake Urmia Basin was delineated into the five distinct homogeneous regions using the 3-month SPI time series. This was six in the case of the 12-month SPI time series. It can be concluded that there are different distinct regions in Lake Urmia Basin according to drought characteristics. The map of regions defined using the 3- and 6-month SPI time series presented in this paper for Lake Urmia Basin.  相似文献   

5.
Closed basins such as the Caspian Sea rapidly respond to variations in atmospheric and geological events. This study has been conducted to deduce the role of natural and anthropogenic influences on the Caspian Sea mean water level fluctuations for the period of 1998–2005. It is recognized that climate is the primary mechanism of the Caspian Sea mean water level variations based on the relatively small differences of the Caspian Sea hydrologic budget residuals and the Caspian Sea mean water level fluctuations. This is further supported by the similarity in water-level variations of the Caspian Sea with those of Lake Van and Lake Urmia. On the other hand, the Caspian Sea needed to lose some of its water to attain water balance equilibrium in 2000 and 2001. The year 2000 showed anomalous seismic activity particularly in the southwestern part of the Caspian Sea. Two significant earthquakes with magnitudes of 6.8 and 6.5 Mw occurred on November 25, 2000. The focal mechanisms of these earthquakes and numerous aftershocks indicated normal faulting and, therefore, caused the Caspian Sea lake level to decline in 2000. The contribution of submarine mud volcano eruptions to the Caspian Sea lake level could be insignificant based on the comparison of water budget residuals and the mean water level variations. Neither crustal deformation (based on the GPS measurements) nor the offshore oil and natural gas production activities in the Caspian Sea are responsible for noticeable changes to the level of the Caspian Sea.  相似文献   

6.
巴丹湖区位于巴丹吉林沙漠的东南缘,发育很多被纵向沙垄一分为二、水体化学特征悬殊的双湖系统。前人对此类湖泊成因及风成地貌过程如何影响湖泊水文特征缺乏系统的研究。通过对沙漠东南缘局部风向和巴丹东、西湖湖盆形态的分析反演湖区的地貌演化,从而对湖泊水化学等特征的差异进行解释。水化学测试结果显示:巴丹东湖湖水的TDS为15 g/L左右,为微咸水;西湖的TDS是东湖的上百倍,为盐水。Google Earth遥感影像和DEM反映出巴丹吉林沙漠盛行NW风,东南缘风向及风力多变;巴丹东湖湖盆深于西湖湖盆。反演了巴丹湖地貌演化的3个阶段:(1)月牙湖形成阶段,即巴丹湖的形成阶段;(2)双湖系统形成阶段,气候干旱使湖泊水位降低、湖盆出露,在NW定向风作用下,新的新月形沙丘形成于湖盆上,将其分割从而导致巴丹东湖湖盆遭受风蚀;(3)纵向沙垄形成阶段,由于局部风向的改变,新月形沙丘在SW向风力作用下往NE向不断延伸,并转变成纵向沙垄。综合分析认为:气候变化是风成地貌演化的驱动力,多次风向的改变产生了湖盆地形西高东低的差异,导致东湖接受的浅层地下水补给大于西湖;当气候变得暖湿时,水位上升致两湖水体连通,由于东湖水位高于西湖,使东湖盐分释放、西湖盐分积累。因此,受地貌演化的影响,巴丹东、西湖形成了悬殊的盐度特征。  相似文献   

7.
Water level, as an intuitive factor of hydrologic conditions, is of great importance for lake management. In this study, periodic structures of water level and its fluctuations in Lake Baiyangdian are analyzed based on wavelet analysis and seasonal-trend decomposition using local error sum of squares (STL). Data of monthly time series are divided into three types with emphasis on anthropogenic influence from water allocation. It is found that intra-annual characteristics of water level fluctuations are the common periodic structures. Water allocation alters the periodic structures by decreasing and weakening the oscillations of water level, compared with the slight effects of natural hydrologic water supplies and short-term climate changes. An irregular water level decline and short-term oscillation with irregular periodicity are deduced from seasonal-trend decomposition analysis using STL. With seasonality depicted monthly, the influence of water allocation implies irregular oscillations with high-frequency components, especially for monthly changes. The water level fluctuations are influenced by seasonal changes, as demonstrated by three types of time series. The impacts of water allocation on seasonality show the differences with continuous single-peak oscillations representing no influences and continuous double-peak oscillations representing frequent influences. Furthermore, the accumulation of water allocation shows a slight rising trend in average monthly level fluctuations over the last several years. The study helps understand periodic structures and long-term trend changes of water level fluctuations, which will facilitate lake management of Lake Baiyangdian.  相似文献   

8.
分析了羊卓雍错湖水19742010年间的水位变化,特别是过去几年湖水水位的大幅度下降,并根据流域内浪卡子县气象数据分析了控制湖水水位变化的主要原因。计算了流域内降水累积距平及蒸发量累积距平,并与湖泊水位的年际变化进行了对比分析。研究结果表明,2005年以前羊卓雍湖湖水的水位年际变化与流域降水累积距平变化一致,而与蒸发量累积距平变化相反,降水与蒸发量变化可以解释93%的湖水水位变化。20052010年湖水水位变化偏离了降水量的变化趋势。分析表明,气候的变化远不能解释羊卓雍湖水位的快速下降,可能人为活动的影响,是导致羊卓雍湖水位下降的主要原因。  相似文献   

9.
西藏羊卓雍错湖面遥感监测模型及近期变化   总被引:3,自引:0,他引:3  
羊卓雍错作为西藏高原三大圣湖之一和藏南重要的高原特色风景旅游景区, 其水域变化受到当地老百姓和各级政府部门的关注. 应用高分辨率陆地资源卫星等遥感数据可以方便、 准确地获取湖泊面积、 周长等信息, 但是由于Landsat 等高分辨率陆地资源卫星影像受到卫星重复周期和卫星过顶时多云天气的影响, 无法实现湖泊面积变化的常规业务化连续监测. 为此, 以Landsat 等高分辨率陆地资源卫星为主要遥感信息源, 结合羊卓雍错水位观测资料, 建立了羊卓雍错湖泊面积变化与水位波动之间的相关模型. 在此基础上, 利用该湖泊面积遥感监测模型, 结合近期水位观测资料分析了羊卓雍错湖面面积变化特征与趋势.  相似文献   

10.
洞庭湖区与城陵矶水位关联性的临界特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用典型测站观测资料与水力学原理相结合,分析不同情况下城陵矶水位与洞庭湖区水位关联性强弱转化的机理和临界条件以及三峡水库对其影响等问题。理论解析表明,固定流量下,湖区水位与城陵矶水位相关关系应为单调指数函数,受到区间距离、湖槽形态等多因素影响,据此提出和率定了各湖区水位的经验计算模式。利用经验计算模式对实测数据进行延展,构建了各种可能出现的湖区来流和干流水位组合下的湖区水位特征曲线族,发现湖区水位与城陵矶水位之间的关联强度存在无影响区、影响区和决定区等状态区间,通过对临界条件的定义和计算,实现了各状态区间的定量划分,并提出了各状态区间内洞庭湖区水位的估算方法。通过对三峡水库蓄水后湖床冲淤和水文条件变化的影响分析,论证了以上方法和认识在水库蓄水后的适用性。  相似文献   

11.
2002年前后博斯腾湖水位变化及其对中亚气候变化的响应   总被引:8,自引:1,他引:7  
王润  孙占东  高前兆 《冰川冻土》2006,28(3):324-329
通过对湖泊补给水量的分析,博斯腾湖2002年前后水位由高向低的转折变化是由开都河径流变化造成的.对2002年前后天山南北其它主要湖泊的水位和河流径流变化作了比较分析结论.由于山区河源径流补给组成不同,表现出在同一中亚气候背景下,即2002年前后该地区气温降低而降水东西各有差异,使得天山西段受降水补给为主的河流,2002年后径流仍有增加,具体反映在伊塞克湖、巴尔喀什湖等水位持续上升和托什干河等径流的偏丰;而天山东部的开都河,受降水减少和气温降低对冰川变化的双重影响,2003年以来径流明显减少,导致博斯腾湖的水位持续下降.  相似文献   

12.
Agricultural production activities, such as those for various fruits and cereals, play a significant role in the local economy and food security of the Urmia Lake region. In particular, this region has thousands of hectares of apple orchards, which have an important socioeconomic impact on the life of people. Climate and land cover changes over the past several decades threaten the apple orchards phenology (AOP). Recent studies have emphasized the effect of temperature on plant phenology; however, they have overlooked the influence of land cover changes, such as Lake Desiccation, on plant phenology. Meanwhile, how climate change and Lake Desiccation will affect the AOP is still not very well understood. Therefore, in this study, we used the Enhanced Vegetation Index (EVI) extracted from remote sensing images acquired by the MODIS sensor spanning from 2003 to 2014, in order to extract the AOP events. Furthermore, we used a random forest regression (RFR) for analyzing the relationship between temperature changes/Lake Desiccation and AOP. The results revealed that EVI is a very useful tool for estimating the AOP with a mean root-mean-square error of 6.25 days. Moreover, there is a linear trend toward the early start of season in this region. The end of season (EOS) and the growing season length have also increased in the areas closer to the lake until 2008. This seems that the delayed EOS in the area closest to Urmia Lake has been associated with the lake microclimate since 2008.  相似文献   

13.
In this study, the largest ever carried out to measure noble gases in the pore water of unconsolidated sediments in lakes, the emission of terrigenic He through the sediment column of Lake Van was successfully mapped on the local scale. The main input of He to the water body occurs at the borders of a deep basin within the lake, which is probably the remains of a collapsed caldera. The 3He/4He ratio identifies the He injected into the sedimentary column of Lake Van as a mixture of He released from a mantle source and radiogenic He of crustal origin (3He/4He∼2.6-4.1×10-6). During passage through the pore space, terrigenic He seems to be further enriched in radiogenic He that is most likely produced in the sediment column. In fact, two distinct trends in isotopic composition can be distinguished in the He injected from the lake basement into the sediments. One of these characterizes samples from the shallow water, the other characterizes samples from the deep basin. However, both of these trends are related to the same source of terrigenic He. The He fluxes determined seem to be characteristic of each sampling location and might be considered as a proxy for the fluid permeability of the deep sediment column. These new findings provide insight into the process of fluid transport within the sediments and into the process of formation of the lake basin. Moreover, the isotopic signature of the He that emanates into the water column of Lake Van is strongly affected by the mixing conditions prevailing in the overlying water body. This fact misled previous studies to interpret the terrigenic He in Lake Van as being solely of mantle origin (3He/4He∼10-5).  相似文献   

14.
安国英  郭兆成  叶佩 《现代地质》2022,36(2):406-417
依据1989年至2019年云南大理地区所辖12个气象站点的气候数据和洱海水质监测资料等文献,分析大理地区气候变化特征和洱海富营养化变化趋势,并总结洱海水质综合营养状态指数与降水量、气温的相互关系。结果表明,1989年至2019年期间,大理地区的年平均气温呈波动上升趋势,气候变暖明显,冬季气温升温幅度最大;年降水量总体呈波动下降趋势,秋季降水量减少最为显著。洱海水质的综合营养状态指数及单因子总氮、总磷、高锰酸盐指数等总体呈升高趋势,而水体透明度呈降低趋势;进一步可分成2个阶段,即2003年之前呈快速上升或下降变化趋势;2003年之后呈波动稳定趋势。洱海综合营养状态指数与年平均气温呈正相关,与年降水量呈负相关关系;总氮、水体透明度分别与年平均气温正相关和负相关,与年降水量则呈负相关和正相关;而总磷与冬季平均气温、高锰酸盐指数与夏季或冬季平均气温均呈正相关关系。年内变化上,洱海污染指数、综合营养状态指数在最近的2015—2019年期间呈现6—10月份明显增高,显示非汛期水质明显好于汛期状况。总之,1989—2019年期间,受大理地区气温升高、降水量减少导致入湖水量减少的影响,洱海综合营养状态指数呈升高趋势,湖泊富营养化进程加剧状况没有得到改善,洱海水环境仍然比较脆弱。  相似文献   

15.
Impacts of human activities on the hydrology of Baiyangdian Lake,China   总被引:5,自引:2,他引:3  
Baiyangdian Lake is the biggest natural freshwater wetland in North China Plain. It provides important ecosystem services such as water regulation and supply, reed production and biodiversity protection. Baiyangdian Lake, however, was threatened by lack of freshwater in recent decades. In this paper, the hydrological changes of the lake were quantified using historical data of water level and groundwater table, and satellite images. In addition, the relationship between water level and socioeconomic development of the basin was investigated. The result revealed a significant decreasing trend of water level in the lake. Water level and groundwater table of Baiyangdian Lake decreased rapidly, caused by the great increase of water withdrawal and consumption due to socioeconomic development in the basin. In particular, population growth and the expansion of irrigated agriculture were two major contributors to the decline of water level and groundwater table. While precipitation was positively correlated with water level, it has less impact on water level and groundwater table than human activities. The diversion of water to the lake raised the water level temporarily and had significant benefits on the wetland ecosystem. The best way to solve ecological problems of Baiyangdian Lake, however, is to control the growth of population, adjust the industrial structure, control land use conversion and improve water use efficiency at the basin scale.  相似文献   

16.
基于长时间序列遥感数据的鄱阳湖水面面积监测分析   总被引:1,自引:0,他引:1  
国产高分辨率卫星的快速发展可有效弥补遥感湖泊监测中影像分辨率不足的问题,更加及时、准确地实现湖泊动态监测。利用1996~2012年155景Landsat影像和2013~2016年34景GF影像为数据源,结合湖口站水位监测数据,分别选用改进的归一化差异水体指数MNDWI和归一化差异水体指数NDWI方法提取卫星遥感影像的水体信息,同时采用统计分析的方法建立了4个时间段的鄱阳湖水体面积-水位关系模型。结果表明:在空间上,鄱阳湖水体面积整体呈现缓慢缩小的趋势;在时间上,除秋季鄱阳湖面积有明显下降趋势外,其他季节整体趋势变化不大;经验证,鄱阳湖四季水体面积-水位呈现二次函数关系。  相似文献   

17.
基于1956-2015年洞庭湖主要控制站实测水文数据,运用Mann-Kendall检验法、主成分分析法对比分析了近60 a来洞庭湖东、南、西三个湖区水位演变特征及其影响因素。结果表明:从调弦口堵口至葛洲坝截流后,南咀和城陵矶站同流量下水位均升高,但南咀站平均水位受三口分流能力减弱而下降(0.03 m),城陵矶站平均水位受湖盆泥沙淤积和长江干流顶托作用而上升(1.33 m);三峡水库运行后,湖盆冲淤基本持平,湖泊同流量下水位基本不变,由于该时段长江流域整体为相对枯水期,因而与葛洲坝截流后相比湖泊年平均水位下降约0.31~0.58 m。近60 a来南咀站平均水位呈显著下降趋势(p<0.05),而城陵矶站水位呈显著上升趋势(p<0.01),说明湖泊水位影响因素作用存在空间异质性。洞庭湖年内水位存在涨(4-5月)~丰(6-9月)~退(10-11月)~枯(12月-次年3月)的变化特征,葛洲坝运行期丰水期水位上涨明显,三峡运行期各月水位均有下降,受水库调度方式影响7-10月水位降幅最大。洞庭湖流域降水量、四水入湖和出湖径流大小以及长江干流水情是洞庭湖水位变化的主要影响因素,三口来沙变异条件下的洞庭湖冲淤量变化是湖泊水位变化的次要因素。  相似文献   

18.
吴珂  陈国浩  蔡鹏  李兵  张翠翠  赵娴 《冰川冻土》2015,37(4):1087-1093
气候变化对水资源的影响是水文领域的一个重要的研究方向, 研究水位变化与气候要素的相关分析, 对预测湖面水位意义重大. 利用1981-2013年山东西南部南四湖水位和沿湖5个国家级气象观测站逐月平均气温、 相对湿度、 风速、 降水和蒸发量等资料, 分析了近33 a来南四湖水位变化特征及气象影响因子. 结果表明: 近33 a南四湖水位升高趋势显著, 平均每10 a升高0.46 m; 水位变化整体分两个阶段, 1989年以前为下降态势, 1989年以后为上升态势, 1994年是水位升高的突变时间点; 平均最高水位出现在3月为33.04 m, 最低出现在12月为32.03 m. 各气象要素对南四湖水位的影响呈明显的季节性, 降水量是影响年水位变化的重要气象因子, 年降水量每增加100 mm, 水位升高0.21 m, 夏季降水量对水位的影响更为显著; 蒸发量在夏、 秋季与水位呈极显著负相关; 水位在夏季与风速、 在冬季与相对湿度均呈显著负相关.  相似文献   

19.
苏干湖盆地是嵌套在柴达木盆地中的一个封闭盆地,大、小苏干湖是盆地地表水和地下水的汇集中心,两湖相距20km,但大苏干湖为咸水湖、小苏干湖为淡水湖。文章通过氢、氧同位素分析盆地中大、小苏干湖湖水补给来源,解释了两湖虽近,但矿化度差别较大的原因。为解决敦煌盆地地下水资源短缺问题,政府部门计划从苏干湖盆地地下水的主要补给源——大哈尔腾河引水至党河当中,但湖水补给源的不同,导致引水对两湖影响不一。结果表明,大苏干湖湖水补给来源为大、小哈尔腾河上游4 800m以上冰雪融水补给,且径流路径长,蒸发强烈。小苏干湖主要由来自党河南山西段和阿尔金山区雨水补给,径流路径短。因此,大、小苏干湖矿化度差别较大,补给源的不同导致引水对大苏干湖湖水影响较大,而对小苏干湖湖水影响较小。  相似文献   

20.
Sedimentological and geomorphological studies of terraces around Lake Van (1647 m) provided a preliminary framework for lake‐level variations. The elevations of terraces and past lake level were measured with a differential global positioning system. A chronology is developed using 234U/230Th dating of travertines, 39Ar/40Ar dating of pyroclastites and 14C dating of organic matter. Facies and stratigraphic correlations identify four transgressions (C1′, C1″, C2′ and C2″), each followed by a regression which ended with low lake levels that caused river incision and terrace formation. Evidence of the oldest transgression (C1′) is found in the uppermost reaches of valleys up to 1755 m, an altitude higher than the present lake threshold (1736 m). This C1′ transgression may be related to pyroclastic flows which dammed an outlet located in the western part of the lake basin and which is dated to before 105 ka. After 100 ka, a second transgression (C1″) reached 1730/1735 m, possibly related to a younger ignimbrite flow, in association with high water inflow (warm and/or wetter conditions). The two younger transgressions reached 1700–1705 m. The first one (C2′) is dated to 26–24.5 cal. ka BP and the second one (C2″) to 21–20 cal. ka BP. Available data suggest that the long‐term lake‐level changes responded mainly to climate oscillations. Additional events such as river captures caused by volcanic falls filling valleys, tectonism, erosion and karstic diversion may have impacted these long‐term lake‐level changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号