首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
A method for generating a suite of synthetic ground motion time‐histories for specified earthquake and site characteristics defining a design scenario is presented. The method employs a parameterized stochastic model that is based on a modulated, filtered white‐noise process. The model parameters characterize the evolving intensity, predominant frequency, and bandwidth of the acceleration time‐history, and can be identified by matching the statistics of the model to the statistics of a target‐recorded accelerogram. Sample ‘observations’ of the parameters are obtained by fitting the model to a subset of the NGA database for far‐field strong ground motion records on firm ground. Using this sample, predictive equations are developed for the model parameters in terms of the faulting mechanism, earthquake magnitude, source‐to‐site distance, and the site shear‐wave velocity. For any specified set of these earthquake and site characteristics, sets of the model parameters are generated, which are in turn used in the stochastic model to generate the ensemble of synthetic ground motions. The resulting synthetic acceleration as well as corresponding velocity and displacement time‐histories capture the main features of real earthquake ground motions, including the intensity, duration, spectral content, and peak values. Furthermore, the statistics of their resulting elastic response spectra closely agree with both the median and the variability of response spectra of recorded ground motions, as reflected in the existing prediction equations based on the NGA database. The proposed method can be used in seismic design and analysis in conjunction with or instead of recorded ground motions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
根据《建筑抗震设计规范(GB50011—2001)》的反应谱曲线,确定了基于Clough-Penzien修正过滤白噪声模型的参数取值。采用时间包络函数考虑地震的非平稳特性,根据加速度峰值等效原则迭代计算得到地面的加速度功率谱密度曲线,然后通过曲线拟合得到与规范各种地震烈度、场地类别和设计地震分组相对应的谱参数。计算结果表明,与规范相对应的加速度功率谱密度曲线呈双峰型,Clough-Penzien谱能较好地拟合其曲线形状。最后给出了规范各种工况下的地面加速度功率谱参数值,为随机抗震计算分析提供了依据。  相似文献   

3.
4.
An energy-based envelope function is developed for use in the stochastic simulation of earthquake ground motion. The envelope function is directly related to the Arias intensity of the ground motion as well to the manner in which this Arias intensity is built-up over time. It is shown that this build-up, represented by a Husid plot, can be very well modelled using a simple lognormal distribution. The proposed envelope makes use of parameters that are commonly available in seismic design situations, either following a deterministic scenario-type analysis or following a more comprehensive probabilistic seismic hazard analysis (PSHA), either in terms of Arias intensity or the more common spectral acceleration. The shape parameters of the envelope function are estimated following the calculation of the analytic envelopes for a large number of records from PEER Next Generation of Attenuation (NGA) database. The envelope may also be used to predict the distribution of peak ground acceleration values corresponding to an earthquake scenario. The distribution thus obtained is remarkably consistent with those of the recent NGA models.  相似文献   

5.
Earthquake ground motion records are nonstationary in both amplitude and frequency content. However, the latter nonstationarity is typically neglected mainly for the sake of mathematical simplicity. To study the stochastic effects of the time‐varying frequency content of earthquake ground motions on the seismic response of structural systems, a pair of closely related stochastic ground motion models is adopted here. The first model (referred to as ground motion model I) corresponds to a fully nonstationary stochastic earthquake ground motion model previously developed by the authors. The second model (referred to as ground motion model II) is nonstationary in amplitude only and is derived from the first model. Ground motion models I and II have the same mean‐square function and global frequency content but different features of time variation in the frequency content, in that no time variation of the frequency content exists in ground motion model II. New explicit closed‐form solutions are derived for the response of linear elastic SDOF and MDOF systems subjected to stochastic ground motion model II. New analytical solutions for the evolutionary cross‐correlation and cross‐PSD functions between the ground motion input and the structural response are also derived for linear systems subjected to ground motion model I. Comparative analytical results are presented to quantify the effects of the time‐varying frequency content of earthquake ground motions on the structural response of linear elastic systems. It is found that the time‐varying frequency content in the seismic input can have significant effects on the stochastic properties of system response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
田利  高国栋  盖霞 《地震工程学报》2018,40(6):1206-1210
根据新《电力设施抗震设计规范》(GB50260-2013)对随机地震动功率谱参数的取值进行分析。介绍新《电力设施抗震设计规范》中设计反应谱,推导设计谱到功率谱的转换过程。选取常用的Clough-Penzien修正过滤白噪声模型作为拟合函数,通过功率谱参数拟合,得到不同场地类别、不同抗震设防烈度下的地震动模型参数。该研究成果可为电力工程抗震设计分析提供参考。  相似文献   

7.
基于我国台湾地区SMART-1密集台阵强震记录资料和Kameda的时变功率谱模型,利用多重滤波技术和非线性最小二乘法拟合得到每条记录的Kameda模型参数值;通过分析模型参数随频率变化的散点图分布规律,建立了时变功率谱模型参数随频率变化的随机模型。采用随机振动理论和多元统计分析方法,分析了沿波传播方向距离、垂直于波传播方向距离及测点所在位置土层厚度等局部空间位置变化对时变功率谱模型参数的影响规律,探讨了时变功率谱模型参数的空间分布形式,建立了各模型参数随空间坐标变化的随机预测模型,从而为重大工程多点输入地震动参数的确定和多点输入加速度时程的合成提供实用模型。  相似文献   

8.
A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary multi-point seismic ground motions at different locations on the ground surface are generated for use in engineering applications. First,a modified iterative procedure is used to generate uniformly modulated non-stationary ground motion time histories which are compatible with the prescribed power spectrum. Then,ground motion time histories are modeled as a non-stationary stochastic process with amplitude and frequency modulation. The characteristic frequency and damping ratio of the Clough-Penzien acceleration spectrum are considered as a function of time in order to study the frequency time variation. Finally,two numerical examples are presented to validate the efficiency of the proposed method,and the results show that this method can be effectively applied to the dynamic seismic analysis of long and large scale structures.  相似文献   

9.
随机方法在地震烈度速报中的应用   总被引:1,自引:0,他引:1  
我国地震监测台网间距大,很难实现大震发生时地震烈度分布图的快速编制.基于随机方法,利用历史小震数据反演地震动估计模型的参数,参考地震发生时获取的少量强震动数据,选取合适的震源参数,正演地震动场的分布.根据地震烈度与地震动参数的经验关系,实现地震烈度速报.本方法可以模拟大震的近断层地震动特征,对高烈度区的判断较目前常用的烈度速报方法更为合理.研究成果既可以用于首张烈度分布图的发布,还能够用于地震烈度的动态修正.  相似文献   

10.
在平稳地震动过程的Clough-Penzien功率谱基础上,采用林家浩非均匀调制函数建立全非平稳地震动过程的演变功率谱。根据我国现行的《建筑抗震设计规范》进行全非平稳地震动演变功率谱的参数识别研究。应用非平稳随机过程模拟的谱表示-随机函数方法,生成建筑结构抗震设计所用地震动的代表性样本集合。通过代表性样本集合的二阶统计值及地震反应谱与目标值的拟合比较,验证本文方法的有效性。最后结合概率密度演化方法,进行以层间位移角为控制准则的结构随机地震反应分析与抗震可靠度计算。  相似文献   

11.
A method for generating an ensemble of orthogonal horizontal ground motion components with correlated parameters for specified earthquake and site characteristics is presented. The method employs a parameterized stochastic model that is based on a time‐modulated filtered white‐noise process with the filter having time‐varying characteristics. Whereas the input white‐noise excitation describes the stochastic nature of the ground motion, the forms of the modulating function and the filter and their parameters characterize the evolutionary intensity and nonstationary frequency content of the ground motion. The stochastic model is fitted to a database of recorded horizontal ground motion component pairs that are rotated into their principal axes, a set of orthogonal axes along which the components are statistically uncorrelated. Model parameters are identified for each ground motion component in the database. Using these data, predictive equations are developed for the model parameters in terms of earthquake and site characteristics and correlation coefficients between parameters of the two components are estimated. Given a design scenario specified in terms of earthquake and site characteristics, the results of this study allow one to generate realizations of correlated model parameters and use them along with simulated white‐noise processes to generate synthetic pairs of horizontal ground motion components along the principal axes. The proposed simulation method does not require any seed recorded ground motion and is ideal for use in performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

13.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

14.
AstochasticmodeloftheFourierphaseofstron groundmotionZhen-PengLIAO;(廖振鹏)andXingJIN(金星)(InstituteofEngineeringMechanics,StateS...  相似文献   

15.
柳夏勃  俞瑞芳 《地震学报》2016,38(6):924-933
本文在对实际地震加速度记录统计分析的基础上,给出了能够合理描述地震动强度非平稳特性的参数及其取值范围;然后引入实验设计方法,建立了适合于地震动强度非平稳特性参数分析的实验设计算法,用来分析地震动强度非平稳特性参数的变化对结构响应的影响;最后通过与近似技术相结合,建立了地震动强度非平稳特性参数与结构响应之间的近似定量关系模型.结果表明,本文提出的实验设计方法适合于对地震动强度非平稳特性参数进行分析,该方法在有效地减小计算量的同时,获得了结构响应与参数变化之间的对应关系.基于实验设计方法进行的特性参数方差分析结果表明:地震动的稳态持时对结构地震响应的影响比较显著;对于周期较小的结构,特性参数之间的交互作用对结构地震响应的影响显著,但当周期大于1 s时,则不显著.本文建立的近似定量关系模型能够较好地反映不同特性参数、不同周期结构动力响应之间的联系,为工程实践中基于结构特性合理设置地震动特性参数、合成或挑选地震加速度时程提供理论依据.   相似文献   

16.
考虑地震动的随机性和频率与强度非平稳性,通过理论分析,提出了一般随机地震动模型,并给出了确定模型参数的原则和方法。该模型以地震动强度、地震动能量以及地震动持时等宏观指标作为控制随机地震动模型参数的指标,而对其内在的频谱组成等指标只要求满足一般地震动的特征。该模型可以用于描述平稳随机过程、强度非平稳随机过程以及强度和频率完全非平稳随机过程。通过与常用功率谱模型的比较,验证了该模型的合理性。  相似文献   

17.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relations hipswas then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

18.
The seismic behaviour of large-size structures subjected to multiple-support excitation is studied by means of a random vibration approach. Ground motion is modelled as a non-stationary stochastic process having an evolutionary spectral density. To describe the spatial variability of the input motion a model is adopted which accounts for finite propagation velocity and for loss of correlation as a function of distance and frequency. Structural analysis is entirely performed in the frequency domain and full advantage is taken of FFT properties and capabilities. An example is given regarding the behaviour of a 800 m long viaduct. Results are shown in terms of response evolutionary spectral density, variance and reliability with respect to a fixed threshold.  相似文献   

19.
20.
Unique to the near‐source region of a large earthquake is the occurrence of strong impulsive ground motion and surface faulting referred to as ‘fling‐step’ motion. The objective of this study is to synthesize broad‐band time histories over a wide range of frequencies by characterizing rupture directivity and fling effects from the comprehensive strong motion database of the near‐fault Chi‐Chi event. To aid in the generation of these special types of ground motions, a hybrid modeling technique is introduced based on the stochastic finite‐fault radiation method and an efficient analytical approach to incorporate the observed low‐frequency features in the records close to the ruptured fault. The results show that the overall agreement among the developed hybrid methodology and recorded waveforms and response spectra is quite satisfying. A brief discussion on the design of infrastructures near seismic fault is also included. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号