首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
色甫金铜矿是新近在冈底斯南缘新生代斑岩成矿带内揭示的一个叠加于热液脉型铜矿上的浅成低温热液型金矿.详细的野外地质调查显示,色甫金铜矿和邻近的鸡公西矿区范围内先后经历了早始新世磁铁矿化、晚始新世-早渐新世与韧性剪切活动有关、早中新世钼矿化和铜矿化以及稍晚的金矿化等多期热液活动.对各期流体活动形成的石英中流体包裹体的岩相学、显微测温、显微激光拉曼和氢-氧同位素分析显示,与磁铁矿化有关的流体为岩浆热液混合建造水的高温、高盐度富水流体;与钼矿化有关的流体为岩浆热液与大气降水混合的高温、高盐度富水流体;与铜矿体形成有关的流体为具有岩浆贡献的中高温含CO2低盐度流体与大气降水来源的低温低盐度富水流体混合的产物;与金矿体形成有关的流体为具有岩浆贡献的中温含CO2±CH4±N2的中低盐度流体与大气降水来源的低温低盐度富水流体混合的产物.利用流体包裹体显微测温对其捕获温压估算的结果显示,铜矿体和钼矿化体形成前,该地区有过1.5~4.1 km的剥蚀,之后至金矿体形成前时有过近6 km的剥蚀,金矿体形成后剥蚀为0.8~1.2 km.矿区后续工作应优先针对近南北向断裂中赋存的蚀变岩型金矿开展工作.  相似文献   

2.
The Chah-Firuzeh porphyry copper deposit is located in 35 km north of Shahre Babak (Kerman province). It is associated with granodioriteic intrusive of Miocene age which intruded Eocene volcanosedimentary rocks. Copper mineralization was accompanied by both potassic and phyllic alteration. Field observations and petrographic studies demonstrate that the emplacement of Chah-Firuzeh pluton took place in several intrusive pulses, each with associated hydrothermal ore fluid formation that was also associated with hydrostatic pressure increasing respect to that of lithostatic pressure (and fracturing development-relative boiling) by circulated fluid. Copper is concentrated as a very early hydrothermal mineralized phase in the evolution of the hydrothermal system. Early hydrothermal alteration produced a potassic assemblage (orthoclase–biotite) in the central deep part of the stock. Alteration ore fluids could be classify into two groups of liquid-reach, containing solid phases, high temperature (390 to 500 °C) high salinity (more than 60 wt.% NaCl equiv.) and gas-rich, high temperature (311 to 570 °C), no solid phase and with low salinities. These magmatic source fluids illustrate sever boiling process and also are the responsible for the both potassic alteration, quartz group I and II veins and chalcopyrite deposition. Propylitic alteration occurred by the liquid-rich, low temperature (241 to 390 °C) and Ca-rich fluid with meteoric origin. Continuous decreasing temperature let the meteoric water diffusion into the system, mixed with magmatic fluids and descending the salinities down to the 1 wt.% NaCl equiv. and leaching the Cu from vein groups II and III by sever thermodynamic anarchies from potassic to the phyllic alteration zones. Phyllic alteration and copper leaching resulted from the inflow of oxidized and acidic meteoric waters with decreasing temperature of the system followed by the incursion of this fluid into and its convection in upper part of the system. A late episode of boiling occurred in the apical the phyllic zone, and was associated with significant copper deposition. Based on the field observation on sharp alteration and related mineralization, it is possible to conclude that all these procedures have been controlled by local faults that could be active even before the pluton injection. These faults and the new form ones (which have been formed after injection), could crash the hosted rocks, and act as physical dams to restrict and limit the mineralization in special strikes and zones within the Cah-Firuzeh ore deposit.  相似文献   

3.
Hydrothermal activity and mesothermal-styled gold mineralisation occurs near the main topographic divide of most active or young collisional mountain belts. The Southern Alps of New Zealand is used in this study as a model for the mineralising processes. The collisional tectonics results in a two-sided wedge-shaped orogen into which rock is transported horizontally. Upper crustal rocks pass through the orogen and leave the orogen by erosion, whereas lower crustal rocks are deformed into the mountain roots. High relief drives meteoric water flow to near the brittle–ductile transition. Lower to upper greenschist facies metamorphic reactions, driven by deformation at the crustal decollement and in the root, release water-rich fluids that rise through the orogen. Intimate chemical interaction between fluid and rock results in dissolution and later precipitation of gold, arsenic and sulphur. Fluid flow and mineralisation in the topographic divide region is facilitated by a network of steeply dipping faults and associated rock damage zones where oblique strike-slip faults intersect the thrust faults that strike subparallel to the main mountain range.The Nanga Parbat massif of the western Himalaya is an example of an active collisional zone which hosts hydrothermal activity but no gold mineralisation. The lack of gold mineralisation is due to the following factors: CO2-dominated rising metamorphic fluid in dehydrated amphibolite-granulite facies metamorphic rocks does not dissolve gold and arsenic; hot (up to 400 °C) meteoric water confined to fractures in the gneiss limits dissolution of gold and arsenic; low density of hot water/dry steam, and low reduced sulphur content of fluid, restrict solubility of gold and arsenic; absence of fracture networks in the core of the massif and the small volumes of circulating fluid limit metal concentration; and lack of reactive rock compositions limits chemically mediated metal deposition.  相似文献   

4.
金矿成矿流体的来源是金矿床成因研究的重要内容.对传统的成矿流体认识进行了评述,强调了渗滤热液在金成矿中的作用.金沉淀的机制除流体温、压的降低外,流体的混合作用及流体与围岩的反应是更为重要的因素.  相似文献   

5.
Models of fluid/rock interaction in and adjacent to the Alpine Fault in the Hokitika area, South Island, New Zealand, were investigated using hydrogen and other stable isotope studies, together with field and petrographic observations. All analysed samples from the study area have similar whole‐rock δD values (δDWR = ?56 to ?30‰, average = ?45‰, n = 20), irrespective of rock type, degree of chloritization, location along the fault, or across‐strike distance from the fault in the garnet zone. The green, chlorite‐rich fault rocks, which probably formed from Australian Plate precursors, record nearly isothermal fluid/rock interaction with a schist‐derived metamorphic fluid at high temperatures near 450–500°C (δD of water in equilibrium with the green fault rocks (δDH2O, green) ≈ ?18‰; δD of water in equilibrium with the greyschists and greyschist‐derived mylonites (δDH2O, grey) ≈ ?19‰ at 500°C; δDH2O, green ≈ ?17‰; δDH2O, grey ≈ ?14‰ at 450°C). There is no indication of an influx of a meteoric or mantle‐derived fluid in the Alpine Fault Zone in the study area. The Alpine Fault Zone at the surface shows little evidence of late‐stage retrogression or veining, which might be attributed to down‐temperature fluid flow. It is probable that prograde metamorphism in the root zone of the Southern Alps releases metamorphic fluids that at some region rise vertically rather than following the trace of the Alpine Fault up to the surface, owing to the combined effects of the fault, the disturbed isotherms under the Southern Alps, and the brittle–ductile transition. Such fluids could mix with meteoric fluids to deposit quartz‐rich, possibly gold‐bearing veins in the region c. 5–10 km back from the fault trace. These results and interpretations are consistent with interpretations of magnetotelluric data obtained in the South Island GeopHysical Transects (SIGHT) programme.  相似文献   

6.
Abstract Fluids, some of which are CO2-rich (up to 40 mol.% CO2) and some of which are highly saline (up to 18 wt% NaCl equivalent), are trapped as fluid inclusions in quartz-calcite (∼ metallic minerals) veins which cross-cut the pumpellyite-actinolite to amphibolite facies rocks of the Alpine Schist. Fluids were commonly trapped as immiscible liquid-vapour mixes in quartz and calcite showing open-space growth textures. Fluid entrapment occurred at fluid pressures near 500 bars (possibly as low as 150 bars) at temperatures ranging from 260 to 330° C. Saline fluids may have formed by partitioning of dissolved salts into an aqueous phase on segregation of immiscible fluids from a low-density CO2-rich fluid. Calcite deposited by these fluids has δ13C ranging from – 8.4 to – 11.5 and δ18O from + 4 to + 13. Isotopic data, fluid compositions and mode of occurrence suggest that the fluids are derived from high-grade metamorphic rocks. Fluid interaction with wall-rock has caused biotite crystallization and/or recrystallization in some rocks and retrogression of biotite to chlorite in other rocks.
Fluid penetration through the rock is almost pervasive in many areas where permeability, probably related to Alpine Fault activity, has focussed fluids on a regional scale into fractured rocks. The fluid flow process is made possible by high uplift-rates (in excess of 10 mm/year) bringing hot rocks near to the surface.  相似文献   

7.
德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据   总被引:10,自引:0,他引:10  
为探讨德兴铜厂斑岩铜矿床成矿热液流体的来源、作用范围、时空演化及Cu在热液流体中的行为和迁移方向等重要问题,对采集于该矿床南部不同蚀变程度的岩石进行了氧、锶、钕同位素分析,结果表明,虽然与铜三斑岩铜矿成矿过程有关的热液流体至少有3种,包括高温岩浆流体、来自深部围岩的非岩浆流体和大气降水,但是起主导作用的是岩浆流体,钕、锶同位素在空间上的变化表明,在成矿流体形成及演化过程中,锶同位素值由斑岩体内部向围岩接触带有规律地升高(0.705→0.711),指示了矿床是因热液流体将成矿元素从岩体内部迁移到接触带附近富集而成的,它符合斑岩铜矿的正岩浆模式,而钕同位素则相对稳定,可作为蚀变侵入体岩浆起源的示踪剂。  相似文献   

8.
The Obiro deposit is located in the Tagawa Acidic Rocks (AR), Uetsu region, NE Japan. The Tagawa AR is composed of a volcanic phase of dacitic welded tuff and a plutonic phase of porphyritic granodiorite. Drill core and ore samples were collected from the deposit and examined by XRD, EPMA, and microthermometry. The drill core samples have suffered pervasively from sericite (illite) alteration, whereas pinkish K‐feldspar alteration halo occur close to veins. The results of EPMA and microthermometry is interpreted as that the magnatic‐hydrothermal fluids has changed as follows; the granodioritic magma intruded at about 1.0 kb and 700°C near the water‐saturated granite solidus; after cooling to about 500°C the fluids boiled according to a change in the pressure regime from lithostatic to hydrostatic; mixing with meteoric water led to sulfide mineralization at around 400°C or less. The main reasons for the mineralization in the Obiro deposit are as follows; the oxidized magma intruded at a shallower level, and thereafter hydrothermal fluids were boiled, resulting in a saline fluid. The saline fluid then dissolved metals such as Pb, Zn, Cu, and Bi, and these metals precipitated during cooling accompanied by dilution of the meteoric water and increasing pH, resulting in decreasing solubility.  相似文献   

9.
钨和铜由于地球化学行为存在明显差异,导致二者通常很难同时发生大规模的成矿作用。然而,江南钨矿带却出现了以石门寺和朱溪为代表的钨(铜)矿床。本文对朱溪钨(铜)矿床中最为重要的铜矿化作用开展了研究,即对形成于新元古代浅变质岩与古生代碳酸盐岩不整合界面附近的似层状钨(铜)矿体进行了精细的矿物学微区原位测试分析。厘定了朱溪矿床深部似层状钨(铜)矿体中铜矿化的形成时代为150.2±2.4Ma,与朱溪矿床的钨矿化时代及钨矿化相关岩体的成岩时代近于一致;揭示了深部似层状钨(铜)矿体中白钨矿、磷灰石的形成与朱溪矿床成矿相关岩浆高程度结晶分异形成的残余岩浆热液流体相关;结合朱溪矿床高分异残余岩浆(流体)具有高度还原的特征,初步提出朱溪矿床成矿过程中,钨来自于高分异残余岩浆热液流体,而铜来自于岩浆热液流体对基底地层中铜元素的萃取。  相似文献   

10.
本文通过对巴西典型金-矽卡岩矿床的解剖,探讨了成矿流体来源、组成演化,以及流体和岩石之间的质量转移程度和机理的信息,揭示金成矿过程中成矿流体演化的规律。研究认为,成矿作用两阶段的成矿流体分别为变质流体和大气降水,它们在开放系统中水岩质量比分别为0.02,2.11,并且获得矽卡岩可能是由围岩转向岩体方向的变质流体交代形成的认识。  相似文献   

11.
安徽月山矿田硅、氦、氖同位素地球化学研究   总被引:2,自引:1,他引:2  
对安徽月山矿田硅、氦、氖同位素组成研究表明 ,月山岩体是玄武质岩浆结晶分异和同化混染的产物 ,矿床的硅来自岩浆熔 流分离作用形成的岩浆热液 ,成矿流体中的氦来自地壳和地幔两个端员。成矿过程中发生了富含放射性成因氦的演化大气降水与岩浆热液的混合。  相似文献   

12.
对小秦岭地区与金矿化有关的主要地质体中流体包裹体叠加组合标型特征和有关地质体Sr、H、O同位素组成的标型性研究证明,小秦岭地区中生代中温热液金矿化流体与中生代花岗岩浆分界出的热液之间没有直接联系,成矿流体更可能是一种演化的大气降水。花岗岩浆活动对金矿化的贡献主要表现为提供了一组局部热源,间接地影响了金矿化的形成。  相似文献   

13.
江西金山金矿床成矿流体地球化学及矿床成因讨论   总被引:3,自引:0,他引:3       下载免费PDF全文
对金山韧性剪切带型金矿床石英及方解石中流体包裹体的研究表明:成矿流体具有中低温、低盐度和低密度的特征;富含Ca2 ,Mg2 ,SO42-,CO2等;主要来源有变质热流体、富含有机质的大气降水形成的热流体和深源流体;流体的性质在时间和空间上都有一定的变化,矿床的形成主要是两期流体成矿作用的结果,是热液与构造的耦合;不同种类流体的混合、单一流体不混溶分离作用和盐水体系中有机质的参与是矿床形成的关键因素.  相似文献   

14.
内蒙古谢尔塔拉铁锌矿床位于大兴安岭中段华力西期、燕山期成矿带上,是一个大中型的火山喷发沉积-热液富集型矿床。在对谢尔塔拉铁锌矿床的物质组成分析的基础上,着重对流体包裹体和稳定同位素进行分析,以此来研究该矿床的成矿流体演化和成矿作用。研究表明,从热液作用早期到中期,具有成矿温度递减、盐度升高的趋势,两者呈负相关变化,指示流体发生了沸腾作用;从热液作用中期到晚期,具有成矿温度递减、盐度降低的趋势,两者呈正相关变化,指示流体发生了混合作用。S、Pb、C、H、O同位素组成表明,金属物质主要来自赋矿岩石和下伏地层,同时还有深部岩浆物质的参与。成矿热液为大气降水补给加热的循环地下水和岩浆水组成的的混合流体,后期又有大量的大气降水补充,使得成矿流体与围岩发生了强烈的同位素交换。矿化和蚀变作用是在水/岩比值比较低的体系中进行的。谢尔塔拉铁锌矿床的成矿流体总体表现为中低温、低盐度、低密度的热液。构造热效应、地热梯度和多次的岩浆喷气热是驱动流体活化迁移的主要因素。构造体制转换使流体稳定体系发生改变,压力释放发生沸腾作用,造就铁、锌在有利位置富集成矿。  相似文献   

15.
The geochemistry of carbonate fault rocks has been examined in two areas of the Arava Fault segment, which forms the major branch of the Dead Sea Transform between the Dead Sea and the Gulf of Aquaba. The role of fluids in faulting deformation in the selected fault segment is remarkably different from observations at other major fault zones. Our data suggest reduced fluid rock interactions in both areas and limited fluid flow. The fault did not act as an important fluid conduit. There are no indications that hydrothermal reactions (cementation, dissolution) did change the strength and behavior of the fault zone, although the two areas show considerable differences with respect to fluid sources and fluid flow. In one area, the investigated calcite mineralization reveals an open fluid system with fluids originating from a variety of sources. Stable isotopes (13C, 18O), strontium isotopes, and trace elements indicate both infiltration of descending (meteoric and/or sea water) and ascending hydrothermal fluids. In the other area, all geochemical data indicate only local (small scale) fluid redistribution. These fluids were derived from the adjacent limestones under nearly closed-system conditions.  相似文献   

16.
滇黔桂地区卡林型金矿热液矿物地球化学   总被引:2,自引:0,他引:2  
肖荣阁  范军 《矿物学报》1997,17(4):478-482
滇黔桂卡林型金矿是产于热水沉积岩及碎屑岩系的热液矿床,载金矿物为黄铁矿、毒砂等热液矿物,而石英、碳酸盐、萤石及粘土等矿物则是主要的热液蚀变矿物。矿化产于蒙脱石、高岭石粘土到伊利石、绿泥石粘土矿物的转变带,成矿深度在2000m以上,成矿热液来源于粘土矿物脱水产生的异常高压流体或沿断裂带天水循环形成的成矿流体。这种流体形成的热液矿物稀土元素分配显示中稀土富集的分配模式,并明显富元素钇,这种流体中形成的黄铁矿中Co/Ni值显示沉积到热液成因的过渡类型,因此与砂岩铜矿中热液矿物的稀土分布模式有某些一致性。  相似文献   

17.
红岭铅锌矿是内蒙古东南部的大型代表性矿床之一.目前,对该矿床成矿流体地球化学特征、性质及演化问题尚缺乏系统研究.对其展开了系统的流体包裹体研究.结果表明,矿区矽卡岩期Ⅰ阶段石榴石中发育含NaCl子矿物三相(SL)、气相-富气相(LV)及气液两相(VL)3种类型的原生流体包裹体,Ⅱ阶段中石英颗粒主要发育LV和VL两种类型原生流体包裹体,测温结果表明矽卡岩期成矿流体属中-高温、高盐度的不均匀NaCl-H2O体系热液,在成矿过程中发生过沸腾作用而导致铅、锌、铜等有用元素沉淀富集.石英-硫化物期Ⅲ→Ⅵ阶段中矿物均主要发育较单一的VL型包裹体,其中Ⅲ阶段热液均一温度较矽卡岩期明显降低,而盐度没有明显变化;Ⅳ阶段成矿流体均一温度明显增高、盐度明显降低,反映了有新的高温、低盐度体系热液的加入;而Ⅴ→Ⅵ阶段成矿流体均一温度及盐度逐渐降低,体现了一种不断与外来天水混合的演变趋势;整体上看,石英-硫化物期流体为简单的中-低温、低盐度NaCl-H2O体系热液.流体包裹体C、H、O同位素研究表明,红岭矿床矽卡岩期Ⅱ阶段成矿流体以岩浆水为主;石英-硫化物期成矿流体源自大气降水与岩浆水的混合流体,晚阶段逐渐演化为以大气降水为主.矿床S、Pb同位素研究表明,区内成矿物质具深源特点.   相似文献   

18.
热水成矿作用   总被引:25,自引:3,他引:25  
本文从热水成矿作用的基本概念、成矿流体地球化学、物理化学与矿床地质等方面对热水成矿作用进行了系统总结,提出热水成矿流体以同生盆地水、表生水包括大洋水为主,在深循环过程中与高温地质体发生作用而获得热量和成矿元素,最后演化为成矿流体;矿化作用主要发生在热水喷流孔附近的物理化学梯度带;对于发生在沉积岩中同生盆地水成因的热水成矿作用具有类似油气藏的生成储集模式,在开放型构造中形成渗透浸染状矿化;在封闭构造中,含矿流体首先集中在构造圈闭中,在构造活动期水爆成矿。热水沉积建造及沉积相带划分是热水成矿作用研究的重要方面,横向上一般划分为硅质岩沉积带、碳酸盐沉积带、硫酸盐沉积带,同时伴随着矿化分带;纵向上分为脉状充填带与喷流沉积带。  相似文献   

19.
The Daraloo field is located in the southeast of Iran (Kerman province). It is associated with Oligomiocene diorite/granodiorite to quartz monzonite stocks. Copper mineralization is basically relevant to potassic and phyllic alteration zones. Petrographic and geologic studies imply that mineralization is restricted to two major parts locating in the center and east of district. The larger central mineralization has a northwest–southeast trend perpendicular to the smaller one. Hydrothermal ore fluid formation occurred in relatively deep levels thereafter faulting and fracturing provided appropriate conduits to ascend fluids through shallower depths. Early hydrothermal alteration produced a confined potassic assemblage in the central and eastern parts of the stock. Two main fluid inclusion groups in relationship with alteration ore fluids have been identified. They are liquid-rich inclusions containing solid phases, with high temperatures (257°C to 554°C) and high salinities (31 to 67 wt.% NaCl equiv.), and vapor-rich inclusions with high temperatures and low salinities without any solid phases. These magmatic source fluids are responsible for boiling and also potassic and phyllic alteration zone. They also resulted in the formation of quartz groups I and II veins and chalcopyrite deposition. Propylitic alteration is attributed to a Ca-rich meteoric fluid. Inclusions originated from this fluid are liquid-rich having low temperatures (161°C to 269°C) and low salinities (1 to 13 wt.% NaCl). Mixing descending meteoric water with magmatic fluids reduces considerably the salinity of magmatic fluid. Mixing is also the impetus of leaching copper from potassic to the phyllic zone. It is possible to conclude that all these procedures are controlled by the main faults of district having NW–SE trend. Two fundamental events affecting the mineralization are cooling ore-bearing fluids and magnetite (±pyrite) emplacement. The latter one is formed in potassic and phyllic alteration zone in which copper-bearing fluids have interaction with magnetite minerals and so chalcopyrite minerals have been formed nearby magnetites. Temperature and pressure of hydrothermal fluid differentiation could be applied as a predictive tool to discriminate between barren and productive copper porphyry deposits. A simple comparison of temperature and pressure variations between Daraloo deposit and other copper porphyry deposits located in the same belt of Iran (Sahand-Bazman belt) illuminates that Daraloo system has high range of pressure implying deeper exsolution of hydrothermal fluid. On the other hand, economic mineralization has direct relationship with temperature range of orthomagmatic fluids so that if a deposit has a wide range of high temperature fluids, it could be inferred as a barren deposit. In conclusion, it could be inferred that Daraloo district can be categorized as a sub-economic porphyry deposit. On the other hand, restricted formation of chalcopyrite and the other copper-bearing minerals besides large amounts of magnetite and pyrite can approve obviously the low grade of mineralization in Daraloo district.  相似文献   

20.
滇西南澜沧江带官房铜矿矿床成因和成矿模式探讨   总被引:4,自引:0,他引:4  
官房铜矿是南澜沧江构造岩浆带正在勘探的规模较大的铜矿床,本文归纳整理了该矿床的地质特征,并结合微量元素和稳定同位素,对矿床成因、成矿模式进行了初步探讨,指出了区域找矿的方向。铜矿化主要与硅化和黄铁矿化有关,含矿岩石为上三叠统小定西组富钾基性火山岩,其稀土元素表现为轻稀土富集型,无或弱的负Eu异常;微量元素配分型式以K、Rb、Ba、Th强烈富集,Ti、Y、Yb、Cr明显亏损为特征,与石英脉型铜矿石存在明显的差异。矿体严格受放射状断裂和岩性双重控制。矿石硫同位素组成稳定,δ34SV-CDT变化范围为-11.88‰~-5.67‰,主要为深源硫。流体包裹体的成分和氢氧同位素组成表明成矿流体为大气降水和岩浆水的混合流体。地质和地球化学特征表明官房铜矿属浅成中-低温热液矿床,形成于相对开放的系统,成矿与隐伏岩体的岩浆作用有明显的成因联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号