首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
潘华  张萌 《地震学报》2022,44(5):743-751
为保证国土范围内建筑倒塌风险的一致性,提出了基于目标风险的地震区划图。该图通过求取地震危险性曲线与结构易损性曲线的卷积的风险积分方法计算目标风险。本文介绍了采用风险积分法确定基于目标风险的地震动参数的基本原理,回顾了这项技术在国内外研究与应用的最新进展。此外,还讨论了基于目标风险的地震区划图未来的发展及可能面临的问题。   相似文献   

2.
The earthquake risk on Romania is one of the highest in Europe, and seismic hazard for almost half of the territory of Romania is determined by the Vrancea seismic region, which is situated beneath the southern Carpathian Arc. The region is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depth from 70 to 160 km. Besides the Vrancea area, several zones of shallow seismicity located within and outside the Romanian territory are considered as seismically dangerous. We present the results of probabilistic seismic hazard analysis, which implemented the “logic tree” approach, and which considered both the intermediate-depth and the shallow seismicity. Various available models of seismicity and ground-motion attenuation were used as the alternative variants. Seismic hazard in terms of macroseismic intensities, peak ground acceleration, and response spectra was evaluated for various return periods. Sensitivity study was performed to analyze the impact of variation of input parameters on the hazard results. The uncertainty on hazard estimates may be reduced by better understanding of parameters of the Vrancea source zone and the zones of crustal seismicity. Reduction of uncertainty associated with the ground-motion models is also very important issue for Romania.  相似文献   

3.
A risk-targeted design spectral acceleration and the corresponding seismic design action for the force-based design of structures is introduced by means of two formulations. The first one called direct formulation utilizes the seismic hazard function at the site of the structure. Because the seismic action defined in the codes is often associated with a designated return period, an indirect formulation is also introduced. It incorporates a risk-targeted safety factor that can be used to define a risk-targeted reduction factor. It is shown that the proposed formulations give analogical results and provide an insight into the concept of the reduction of seismic forces for the force-based seismic design of structures if the objective is defined by a target collapse risk. The introduced closed-form solution for the risk-targeted reduction factor can be used to investigate how the target collapse risk, the seismic hazard parameters, the randomness of the seismic action, and the conventional parameters (ie, the overstrength factor and the deformation and energy dissipation capacity) affect the seismic design forces in the case of force-based design. However, collaborative research is needed in order to develop appropriate models of these parameters. In the second part of the paper, the proposed formulations are demonstrated by estimating the risk-targeted seismic design action for a six-storey reinforced concrete building. By verifying the collapse risk of the designed structure, it is demonstrated that the risk-targeted seismic action, in conjunction with a conventional force-based design, provided structure with acceptable performance when measured in terms of collapse risk.  相似文献   

4.
This paper aims at investigating possible regional attenuation patterns in the case of Vrancea(Romania) intermediate-depth earthquakes.Almost 500 pairs of horizontal components recorded during 13 intermediate-depth Vrancea earthquakes are employed in order to evaluate the regional attenuation patterns.The recordings are grouped according to the azimuth with regard to the Vrancea seismic source and subsequently,Q models are computed for each azimuthal zone assuming similar geometrical spreading.Moreover,the local soil amplification which was disregarded in a previous analysis performed for Vrancea intermediate-depth earthquakes is now clearly evaluated.The results show minor differences between the four regions situated in front of the Carpathian Mountains and considerable differences in attenuation of seismic waves between the forearc and backarc regions(with regard to the Carpathian Mountains).Consequently,an average Q model of the type Q(f) = 115×f~(1.25) is obtained for the four forearc regions,while a separate Q model of the type Q(f) = 70×f~(0.90) is computed for the backarc region.These results highlight the need to evaluate the seismic hazard of Romania by using ground motion models which take into account the different attenuation between the forearc/backarc regions.  相似文献   

5.
This work focuses on the evaluation of the seismic hazard for Romania using earthquake catalogues generated by a Monte Carlo approach. The seismicity of Romania can be attributed to the Vrancea intermediate-depth seismic source and to 13 other crustal seismic sources. The recurrence times of large magnitude seismic events (both crustal and subcrustal), as well as the moment release rates are computed using simulated earthquake catalogues. The results show that the largest contribution to the overall moment release for the crustal seismic sources is from the seismic regions in Bulgaria, while the seismic regions in Romania contribute less than 5% of the overall moment release. In addition, the computations show that the moment release rate for the Vrancea subcrustal seismic source is about ten times larger than that of all the crustal seismic sources. Finally, the Monte Carlo approach is used to evaluate the seismic hazard for 20 cities in Romania with populations larger than 100,000 inhabitants. The results show some differences between the seismic hazard values obtained through Monte-Carlo simulation and those in the Romanian seismic design code P100-1/2013, notably for cities situated in the western part of Romania that are influenced by local crustal seismic sources.  相似文献   

6.
This research focuses on the evaluation of soil conditions for seismic stations in southern and eastern Romania, their influence on stochastic finite-fault simulations, and the impact of using them on the seismic hazard assessment. First, the horizontal-to-vertical spectral ratios (HVSR) are evaluated using ground motions recorded in 32 seismic stations during small magnitude (M W  ≤ 6.0) Vrancea seismic events. Most of the seismic stations situated in the southern part of Romania exhibit multiple HVSR peaks over a broad period range. However, only the seismic stations in the eastern-most part of Romania have clear short-period predominant periods. Subsequently, stochastic finite-fault simulations are performed in order to evaluate the influence of the soil conditions on the ground motion amplitudes. The analyses show that the earthquake magnitude has a larger influence on the computed ground motion amplitudes for the short- and medium-period range, while the longer-period spectral ordinates tend to be influenced more by the soil conditions. Next, the impact of the previously evaluated soil conditions on the seismic hazard results for Romania is also investigated. The results reveal a significant impact of the soil conditions on the seismic hazard levels, especially for the sites characterized by long-period amplifications (sites situated mostly in southern Romania), and a less significant influence in the case of sites which have clear short predominant periods.  相似文献   

7.
中国地震烈度衰减的概率模型   总被引:1,自引:0,他引:1       下载免费PDF全文
本文在考虑地震烈度评定和预测的不确定性的基础上,提出建立烈度衰减概率模型的方法。根据我国东部和西部(大致以东经104为界)地区已发生的破坏性地震的等震线图,提供了两个地区地震烈度衰减的概率模型。最后,简要讨论了如何将这一模型应用于地震危险度评定的基本思想。   相似文献   

8.
The structure of the Intramoesian fault is studied for the purpose of estimating its contemporary activity. The fault is known in the territory of Romania and Bulgaria, but it is insufficiently studied both from the geological point of view on the surface and from the geophysical point of view, from which the pattern of its deep structure can be inferred. The fault zone is the key structure for the solution of the problem of estimating the seismic hazard of the region, since the latest studies of this territory indicate the existence of traces of relatively young tectonic processes. According to some concepts the Intramoesian fault sets bounds to the tectonic plate, which is subducted under the Carpathian fold system in the region of the Vrancea Mountains. The paper under consideration presents the results of the field study of the southeastern, the Bulgarian, part of the fault with the application of a complex of geological-geomorphological and geophysical methods. On this basis, the structural segmentation of the fault is carried out and the specific features of its intersection with the disjunctives of another structural orientation are inferred. The data, which determine the degree of its geological and seismic activity, are also discussed.  相似文献   

9.
This article presents site-specific probable seismic hazard of the Himachal Pradesh province, situated in a seismically active region of northwest Himalaya, using the ground motion relations presented in a companion article. Seismic recurrence parameters for all the documented probable sources are established from an updated earthquake catalogue. The contour maps of probable spectral acceleration at 0, 0.2, and 1 s (5% damping) are presented for 475 and 2475 years return periods. Also, the hazard curves and uniform hazard response spectrums are presented for all the important cities in this province. Results indicate that the present codal provision underestimates the seismic hazard at cities of Bilaspur, Shimla, Hamirpur, Chamba, Mandi, and Solan. In addition, regions near Bilaspur and Chamba exhibit higher hazard levels than what is reported in literature.  相似文献   

10.
A seismic hazard assessment study of continental Ecuador is presented in this paper. The study begins with a revision of the available information on seismic events and the elaboration of a seismic catalog homogenized to magnitude Mw. Different seismic source definitions are revised and a new area-source model, based on geological and seismic data, is proposed. The available ground motion prediction equations for crustal and subduction sources are analyzed and selected for the tectonic environments observed in Ecuador. A probabilistic seismic hazard assessment approach is carried out to evaluate the exceedance probability of several levels of peak ground acceleration PGA and spectral accelerations SA (T) for periods (T) of 0.1, 0.2, 0.5, 1 and 2s. The resulting hazard maps for continental Ecuador are presented, together with the uniform hazard spectra of four province capital cities. Hazard disaggregation is carried out for target motions defined by the PGA values and SA (1s) expected for return periods of 475 and 2475 years, providing estimates for short-period and long-period controlling earthquakes.  相似文献   

11.
This paper presents new seismic hazard maps of the Maghreb countries by using newly re-evaluated earthquake data catalogue in the region under consideration. For this region, there is a clear need to use common procedure and data bases through the whole Maghreb region so that seismic hazard assessments are consistent from country to country. An effort is made to assess the seismic hazard and to construct earthquake hazard maps in terms of expected horizontal and vertical PGA for a 10 per cent chance of being exceeded, expected intensity (MSK), all in an economic life time of 50 and 100 years. Also, a return period seismic hazard map for PGA≥140cm/s2 is presented. For engineering applications, earthquake hazard maps for structures with different periods are also constructed.  相似文献   

12.
Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.  相似文献   

13.
Probabilistic seismic hazard maps, in terms of spectral acceleration and uniform hazard response spectra at given sites, considering local soil conditions, represent a much more complete estimate of the seismic hazard than the traditional maps in terms of peak ground acceleration or macroseismic intensity. This is particularly true when the requests of urban planners and engineers have to be met. The present analysis shows how some hazard parameters, such as the effective peak acceleration and the spectrum intensity, can well synthesise the overall information available from traditional probabilistic studies, but also suggests that soil condition is a first-order ingredient for effective seismic hazard mapping at national level. Three Italian towns, damaged by the 1997 Umbria–Marche earthquake sequence, are considered as example to demonstrate that: (1) soil condition dependent uniform hazard spectra well approximate actual spectra recorded during some events of the seismic sequence; (2) for these localities, the design spectrum of the present Italian seismic code does not seem adequate.

These considerations have induced the Italian scientific community to propose an updating of the national seismic zonation on the basis of several hazard parameters, that are described in this paper.  相似文献   


14.
Variation in the seismic collapse fragility of reinforced concrete frame buildings predicted using different ground motion (GM) selection methods is investigated in this paper. To simulate the structural collapse, a fiber‐element modelling approach with path‐dependent cyclic nonlinear material models that account for concrete confinement and crushing, reinforcement buckling as well as low cycle fatigue is used. The adopted fiber analysis approach has been found to reliably predict the loss in vertical load carrying capacity of structural components in addition to the sidesway mode of collapse due to destabilizing P–Δ moments at large inelastic deflections. Multiple stripe analysis is performed by conducting response history analyses at various hazard levels to generate the collapse fragility curves. To select GMs at various hazard levels, two alternatives of uniform hazard spectrum (UHS), conditional mean spectrum (CMS) and generalized conditional intensity measure (GCIM) are used. Collapse analyses are repeated based on structural periods corresponding to initial un‐cracked stiffness and cracked stiffness of the frame members. A return period‐based intensity measure is then introduced and applied in estimating collapse fragility of frame buildings. In line with the results of previous research, it is shown that the choice of structural period significantly affects the collapse fragility predictions. Among the GM selection methods used in this study, GCIM and CMS methods predict similar collapse fragilities for the case study building investigated herein, and UHS provides the most conservative prediction of the collapse capacity, with approximately 40% smaller median collapse capacity compared to the CMS method. The results confirm that collapse probability prediction of buildings using UHS offers a higher level of conservatism in comparison to the other selection methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
New probabilistic seismic hazard and Arias Intensity maps have beendeveloped for the territory of the Kyrgyz Republic and bordering regions.Data were mainly taken from the seismic catalogue of Kyrgyzstan and partlyfrom the world seismic catalogue. On the base of seismicity and activetectonics, seismic zones were outlined over the area. For these,Gutenberg-Richter laws were defined using mainly instrumental data, butregarding also historical events. Attenuation of acceleration inside the targetarea could not be determined experimentally since existing strong motiondata are insufficient. Therefore, empirical laws defined for other territories,principally Europe and China, were applied to the present hazardcomputations. Final maps were calculated with the SEISRISKIII programaccording to EUROCODE8 criteria, i.e. for a period of 50 years with90% probability of non-exceedance. For long-term prediction, 100 yearsmaps with 90% probability of non-exceedance have been developed. Theprocedure used for seismic hazard prediction in terms of PGA (PeakGround Acceleration) was also applied to Arias intensities in order to beable to define regional seismogenic landslide hazard maps.  相似文献   

16.
A comparison of seismic risk maps for Italy   总被引:5,自引:3,他引:2  
National seismic risk maps are an important risk mitigation tool as they can be used for the prioritization of regions within a country where retrofitting of the building stock or other risk mitigation measures should take place. The production of a seismic risk map involves the convolution of seismic hazard data, vulnerability predictions for the building stock and exposure data. The seismic risk maps produced in Italy over the past 10 years are compared in this paper with recent proposals for seismic risk maps based on state-of-the-art seismic hazard data and mechanics-based vulnerability assessment procedures. The aim of the paper is to open the discussion for the way in which future seismic risk maps could be produced, making use of the most up-to-date information in the fields of seismic hazard evaluation and vulnerability assessment.  相似文献   

17.
The objective of this study is to evaluate the seismic hazard in Eastern Marmara Region using an improved probabilistic seismic hazard assessment methodology. Two significant improvements over the previous seismic hazard assessment practices are accomplished in this study: advanced seismic source characterization models in terms of source geometry and recurrence relationships are developed, and improved global ground motion models (NGA-W1 models) are employed to represent the ground motion variability. Planar fault segments are defined and a composite magnitude distribution model is used for all seismic sources in the region to properly represent the characteristic behavior of the North Anatolian Fault without the need for an additional background zone. Multi-segment ruptures are considered using the rupture model proposed by the Working Group on California Earthquake Probabilities (2003). Events in the earthquake catalogue are attributed to the fault zones and scenario weights are determined by releasing the accumulated seismic energy. The uniform hazard spectra at 10 % probability of exceedance in 50 years hazard level for different soil conditions (soil and rock) are revealed for specific locations in the region (Adapazar?, Düzce, Gemlik, Izmit, Iznik and Sapanca). Hazard maps of the region for rock site conditions at the selected hazard levels are provided to allow the readers perform site-specific hazard assessment and develop site-specific design spectrum for local site conditions.  相似文献   

18.
Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units — the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.  相似文献   

19.
中美两国最新地震动区划图的对比   总被引:2,自引:2,他引:0  
本文介绍了中美两国地震动区划的技术方法、使用的资料、区划结果,并对两国的区划图特点进行对比分析,它们分别反映了两国地震科学研究的程度和抗震设防的水平,结果表明:中关两国具有相同的编图思路,具体技术方法和区划结果有一定的差别.  相似文献   

20.
—?The problem of accounting for local soil effect on earthquake ground motion is especially urgent when assessing seismic hazard – recent needs of earthquake engineering require local site effects to be included into hazard maps. However, most recent works do not consider the variety of soil conditions or are performed for generalized site categories, such as “hard rock,”“soft soil” or “alluvium.” A technique of seismic hazard calculations on the basis of the Fourier Amplitude Spectra recently developed by the authors allows us to create hazard maps involving the influence of local soil conditions using soil/bedrock spectral ratios. Probabilistic microzoning maps may be constructed showing macroseismic intensity, peak ground acceleration, response and design spectra for various return periods (probability of exceedance), that allow optimization of engineering decisions. An application of this approach is presented which focused on the probabilistic microzoning of the Tashkent City.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号