首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Circum-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental deformations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of ancient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin subsidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated ancient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan-Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton interiors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: propagating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in central-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, together with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment.  相似文献   

2.
The middle part of the Tianshan Mountains in Xinjiang is located in the north-central part of the Tianshan orogenic belt, between the rigid Tarim Basin and Junggar Basin. It is one of the regions with frequent deformation and strong earthquake activities. In this paper, 492 MS>2.5 earthquake events recorded by Xinjiang seismograph network from 2009 to 2018 were collected. The MS3.5 earthquake was taken as the boundary, the focal mechanism solutions of the earthquake events in this region were calculated by CAP method and FOCEMEC method respectively. At the same time the focal mechanism solutions of GCMT recorded historical earthquake events in this region were also collected. According to the global stress map classification standard, the moderate-strong earthquakes in the region are mainly dominated by thrust with a certain slip component, which are distributed near the combined belts of the Tarim Basin, Junggar Basin, Turpan Basin and Yili Basin with Tianshan Mountains. The thrust component decreases from south to north, while the strike-slip component increases. The spatial distribution characteristics of the tectonic stress field in the middle section of the Tianshan Mountains in Xinjiang are obtained by using the damped regional-scale stress field inversion method. The maximum principal compressive stress in axis the study area rotated in a fan shape from west to east, the NW direction in the western section gradually shifted to NE direction, its elevation angle is nearly horizontal, in the state of near horizontal compression. The minimum principal compressive stress axis is nearly EW, and the elevation angle is nearly vertical. Influenced by large fault zones such as Kashi River, Bolhinur, Nalati, Fukang, the southern margin of the Junggar and the north Beiluntai, the local regional stress field presents complex diversity. Under the influence of the northward extrusion of Pamir and Tarim blocks, the whole Tianshan is shortened by compression, but its shortening rate decreases from south to north and from west to east, the stress shape factor increases gradually from west to east, the intermediate principal compressive stress axis exhibits a change in compression to extension. There are some differences in the characteristics of tectonic stress field between the north and south of Tianshan Mountains. The regional maximum principal compressive stress axis is 15° north by east on the south side, while it is nearly NS on the north side. The deformation of the Tianshan Mountains and the two basins on both sides is obviously larger than that in the inside of the mountain. Changes in the crustal shortening rate caused by the rotation of the rigid Tarim block and Junggar block to the relatively soft Tianshan block, as well as the uplifts of Borokonu and Bogda Mountains, the comprehensive influence of the material westward expansion constitute the stress field distribution characteristics of the north and south sides of the middle section of Tianshan Mountains. The recent two MS6.6 earthquakes in the region caused the regional stress field to rotate counterclockwise. The post-earthquake stress field and the main source focal mechanism solution tend to be consistent. The seismic activity in the study area is week in the south and strong in the north. The focal depth is about 20km. Most strike-slip earthquakes occur near the junction belt of the Tianshan and Junggar Basin.  相似文献   

3.
The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of roughly parallel anticlines.Geological observations predicted that averaged over last~1 Ma time scale,the shortening rates of these anticlines are about2.1–5.5 mm/a;However by averaged over about 10±2 kyr,their shortening rates reduce to merely about 1.25±0.5 mm/a.The slow shortening of the anticlines in the last~10±2 kyr is coarsely concurrent in time with the last global deglaciation.Here,we use a two-dimensional finite element model to explore crustal deformation across north piedmont of the Tianshan Mountains under various erosion-sedimentation conditions that are assumed to represent the climate-controlled surface process.Numerical experiments show that with a relatively weak erosion-sedimentation strength,the crustal shortening is accommodated mainly by north piedmont of the Tianshan Mountains,similar to the high shortening rate of anticlines averaged over the last~1Ma.By increasing erosion-sedimentation strength,the resultant crustal shortening is transformed gradually toward the Tianshan Mountains,resulting in the shortening rate in its north piedmont being decelerated to what is observed as averaged over the last~10±2 kyr.This result suggests that erosion and sedimentation could play an important role mechanically on strain localization across an intra-continent active tectonic belt.Hence,if the climate change around the last global deglaciation could be simply representative to the enhancement of surface erosion and sedimentation across the pre-existed Tianshan Mountains and its foreland,our models indicate that the observed shortening-rate variations averaged over~1 Ma and~10±2kyr time scales around north piedmont of the Tianshan Mountains should be resulted from climate changes.  相似文献   

4.
盆山结合部的浅-深结构样式是进行陆内造山动力学研究与讨论的重要依据.2007年,在喀什东的天山与塔里木盆地之间的过渡带上,完成了一条近南北向的长度为121 km的主动源深地震反射剖面,显示出盆山结合部现今地壳尺度的构造格架.剖面南部呈现出10~12 km巨厚的沉积盖层,沉积盖层内发育滑脱断层;盆山结合部多排隆起构造以及天山山前上地壳显现出向北倾斜的断裂与地表地质观察吻合;盆山结合带展现出滑脱与逆冲推覆构造相关的断层褶皱;与塔里木盆地稳定沉积层相比,在南天山浅、中层地层受到强烈的变形改造,导致地层比较破碎,反射变弱、连续性较差;时间剖面上可以追踪到比较连续的Moho反射,从南向北有加深的趋势.深地震反射剖面揭露出的西南天山与塔里木盆地的这些浅-深构造,展现出塔里木盆地盖层向南天山滑脱与南天山向塔里木盆地逆冲推覆的特征,反映出陆内汇聚下的盆山耦合关系.  相似文献   

5.
天山造山带是新生代以来复活隆升的陆内造山带,强烈的地震活动性使得理解和认识天山造山带深部结构及盆山耦合关系尤为重要。文章中使用天山造山带及邻区(40°~49°N,79°~93°E)85个台站2017—2019年的背景噪声资料,结合背景噪声互相关方法获得了6~52 s瑞利波相速度频散曲线,利用基于射线追踪的面波直接反演法对天山中段地壳三维S波速度结构及盆山耦合关系进行研究。结果显示:地壳浅层S波速度分布与构造单元中沉积层厚度相关,塔里木盆地北缘、准噶尔盆地南缘表现为低速,天山造山带表现为高速;到了中下地壳,天山造山带下方存在被高速异常包裹的低速体;莫霍面附近,天山造山带表现出相对低速;准噶尔盆地南缘和天山造山带的地壳厚度分别在45~50 km、50~62 km之间,沿南北向,天山造山带莫霍面呈现较为宽缓的形态;在82°~86.5°E之间,塔里木盆地和准噶尔盆地向天山下方双向俯冲,86.5°~88°E之间,准噶尔盆地向天山南向俯冲,由西向东,不同盆山耦合关系揭示了新生代以来天山中段不同区域构造运动差异,为进一步探讨造山动力过程提供参考。  相似文献   

6.
秦岭-大别造山带横贯中国大陆中部,并将我国东部分为南北两部;即华北克拉通和扬子克拉通.在南、北相向运动力系驱动下构成了一个极为复杂的复合、叠加构造带、成矿带和地震活动带.同时导致了该地域异常变化的沉积建造和强烈起伏的结晶基底.然而对它们形成的地球物理边界场响应,岩相和结构的异常变化尚不清晰,特别对盆山之间的耦合响应更缺乏深层动力过程的理解.为此本文通过该区榆林-铜川-涪陵长1000 km剖面的地震探测和研究结果提出:(1)沉积建造厚度变化为4~10 km,结晶基底起伏强烈,幅度可达4~6 km;(2)一系列基底断裂将该区切割为南鄂尔多斯盆地和秦岭北缘前陆盆地、秦岭-大巴造山带和南缘前陆盆地与东北四川盆地,其中前陆盆地为秦岭北渭河盆地和秦岭南通江-万源盆地;(3)秦岭造山带是北部华北克拉通向南推挤、南部扬子克拉通向北推挤下隆升的陆内山体,并构筑了其南、北前陆盆地;(4)秦岭造山带的南、北边界并非是一条边界断层,而应是包括前陆盆地在内的组合界带;(5)秦岭与大巴弧形山系源于同一深部结晶基底,即同根生.这一系列的新认识对深化理解秦岭-大巴造山带形成的深层动力过程和演化机理及厘定扬子克拉通的真实北界具有极为重要的意义.  相似文献   

7.
南天山及塔里木北缘构造带西段地震构造研究   总被引:4,自引:0,他引:4       下载免费PDF全文
田勤俭  丁国瑜  郝平 《地震地质》2006,28(2):213-223
南天山及塔里木北缘构造带位于帕米尔地区东北侧,地震活动强烈。文中通过地质构造剖面、深部探测资料和地震震源机制解资料,综合研究了该区的地震构造模型。结果认为,该区的构造活动主要表现为天山地块逆冲于塔里木地块之上。天山构造系统包括迈丹断裂及其前缘推覆构造;塔里木构造系统包括深部的塔里木北缘断裂、基底共轭断层和浅部的推覆构造。塔里木北缘断裂是发育于塔里木地壳内部的高角度断裂,其形成原因在于塔里木和天山构造变形方向的差异。塔里木北缘断裂为研究区大地震的主要发震构造,天山推覆构造和塔里木基底断裂系统均具有不同性质的中强地震发震能力  相似文献   

8.
For the Triassic continental collision, subduction and orogenesis in the Dabie-Sulu belt, a lot of data on petrology, geochemistry and chronology have been published[1]. However, so far no depositional records on the Triassic syn-collisional orogenesis of…  相似文献   

9.
天山的晚新生代构造变形及其地球动力学问题   总被引:73,自引:6,他引:73  
张培震  冯先岳 《中国地震》1996,12(2):127-140
天山是大陆内部典型的新生代复活造山带,其新生代构造变形的方式,变形量,速度及过程等对于认识大陆内部造山带的变形机理有着重要的意义。本文在对南北天山主要活动构造地质填图和综合研究的基础上,重点探讨了天山的晚新生代构造变形特征及其动力学问题。早更新世以来,特别是早,中更新世之间,天山的构造活动由内部向南北两侧扩展,使得两侧的新生代凹陷逐渐褶皱成山,形成数排新生代褶皱带,整个天山的现代构造活动是一种扇形  相似文献   

10.
Three-dimensional velocity images of the crust and upper mantle beneath orogenic belts and adjacent basins of the northwestern continent of China are reconstructed by seismic tomography, based on arrival data of P wave recorded in seismic networks in Xinjiang, Qinghai, Gansu of China and Kyrgyzstan. The velocity images of upper crust demonstrate the tectonic framework on the ground surface. High velocities are observed beneath orogenic belts, and low velocities are observed in the basins and depressions that are obviously related to unconsolidated sediments. The velocity image in mid-crust maintains the above features, and in addition low velocities appear in some earthquake regions and a low velocity boundary separates the western Tianshan Mts. from eastern Tianshan Mts. The orogenic belts and the northern Tibetan plateau have a Moho depth over 50 km, whereas the depths of the Moho in basins and depressions are smaller than 50 km. The velocity images of upper mantle clearly reveal the colliding relationship and location of deep boundaries of the continental blocks in northwestern China, indicating a weakness of the upper mantle structure of orogenic belts. The top depth of upper mantle asthenosphere varies from place to place. It seems shallower under the northern Tibetan plateau, Altay and Qilian Mts., and deeper under the Tarim and Tianshan regions. Hot mantle probably rose to the bottom of some orogenic belts along tectonic boundaries when continental blocks collided to each other. Therefore their dynamic features are closely correlated to the formation and evolution of orogenic belts in northwestern China.  相似文献   

11.
Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.  相似文献   

12.
天山作为全球新构造运动和地震活动最为强烈的板内造山带,一直是中外地震学家密切关注的区域之一。本文从天山地区应力场及构造运动特征入手,对天山不同构造分区地震的破裂和地震序列类型分布特征进行研究,结果显示对于天山全区而言,地震破裂类型主要为逆断-走滑型,地震序列类型以主-余型为主,同时试图通过强震发震构造力学性质和地震学参数等方面的对比,揭示构造带内部差异性运动对强震孕育发生的影响,以期为天山地区地震活动性研究与地震预测提供基础性研究支持。  相似文献   

13.
帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征   总被引:15,自引:0,他引:15  
归纳了帕米尔东北缘弧形构造的基本特征 ,分析了塔里木盆地西北部EW向逆断裂背斜带与NNW向隐伏走滑断裂之间的关系。通过塔里木盆地与西南天山和帕米尔东北缘变形特征的对比 ,认为塔里木盆地西北部的变形样式与帕米尔东北缘的弧形构造类似 ,弧形构造具有由帕米尔东北缘向塔里木盆地扩展的特征 ,这种构造是帕米尔向北挤入运动所特有的变形样式  相似文献   

14.
秦岭造山带与其南北两侧华北克拉通和扬子克拉通属三大构造单元,不论其各构造单元体还是其界带构造均甚为复杂,并受到多期次构造运动的制约,形成了大陆内部特异的造山过程.尽管在这一地域曾做过大量的地表地质工作和一些相关的地球物理工作,但对其壳、幔精细结构、深层动力过程,特别是同步穿越华北克拉通、秦岭-大巴造山带和扬子克拉通系统的耦合研究甚少.为了研究和探索该地域的壳、幔精细速度结构和其形成的深层过程,专门布置了一条北起榆林,向南经咸阳、宁陕直抵涪陵长达1000 km的高精度地震宽角反射、折射波场探测剖面.通过剖面辖区高分辨率的数据采集,数据处理、反演和壳、幔层、块精细速度结构,发现剖面辖区深部壳、幔结构存在特异的速度和结构变化,并厘定了一系列的新认识.研究结果表明:(1)秦岭—大巴造山带具有同一基底,其形成乃为结晶基底隆升所致,即它的形成仅涉及到上地壳的受力变形和空间状态.造山带与其南、北两侧的前陆盆地为陆内造山过程中同一深层过程的产物,但其沉积速率和形态却不相同.华北克拉通与秦岭造山带之间前陆盆地Bfc拉张为该区Moho界面的局部隆升所致.(2)首次提出了沿1000 km长剖面连续的沉积建造、结晶基底、上地壳、下地壳和上地幔顶部的层、块速度结构和各界面的起伏变化与空间状态.基于地震波边界场响应厘定了华北克拉通、秦岭—大巴造山带和扬子克拉通的分区界带.论述了三大构造单元各自的内部结构和其相邻界域的速度变化特征.(3)该区大陆内部速度结构和不同类型断裂分布及层序在华北克拉通、秦岭—大巴造山带、扬子克拉通三大块体地域存在显著差异.不同规模、层次与产状的断裂分布反映出它们在变形行为和机制上及所受构造运动的制约上均存在明显的差异.  相似文献   

15.
柯坪推覆构造系是西南天山前陆推覆构造的重要组成部分。文中试图通过对柯坪推覆构造区的影像解译和野外观察、断错地貌的实测和探槽开挖,探讨柯坪塔格山前断裂东段晚第四纪以来的古地震活动。在三岔口以西的五道班—三间房一带和三岔口以东的大山口道班一带,除现代洪积扇外,明显可见2期保存较完整的洪积扇被断错。五道班—三间房地段的3个探槽揭露出了晚更新世末期以来该破裂段发生的4次事件,其参考年代为:距今22、14、6·5和4·4ka;重复间隔时间约为:8、7和2ka左右。间隔时间长的事件垂直位移量约1~1·2m,缩短量约1·3~1·4m;间隔时间短的事件,垂直位移量0·20~0·30m,缩短量0·6~0·7m。大山口道班段探槽揭露出了晚更新世末期以来的2次事件,分别发生在稍早于距今13ka和稍晚于距今6ka。重复间隔时间约7ka。同震垂直位移量约50cm,缩短量130cm左右  相似文献   

16.
From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain, the splicing of adjacent blocks and the fast uplift of the Tianshan Mountains.  相似文献   

17.
天山中段的深浅构造特征   总被引:3,自引:1,他引:2       下载免费PDF全文
天山起源于古生代的陆-陆碰撞作用,又经历了中新生代的典型陆内造山过程,其深浅构造结构和活动性一直是众多学者关注的热点。文中通过多种地球物理探测和综合地质构造分析, 以地学断面形式对其深浅构造进行填图,揭示了天山中段复杂的深浅构造特色。结果表明:沿古生代的陆-陆碰撞缝合带两侧分别呈现出主要构造地质单元由老到新的对称性,并伴有相应深部结构的复杂性,反映了碰撞过程及后期的构造演化特点;天山中部的上地幔顶部存在厚近 10km、宽近 200km、几乎涵盖整个天山的低速高导层,可能是中新生代以来天山的陆内再造山作用引起的壳幔拆沉作用形成的残留下地壳  相似文献   

18.
From April,2003 to September,2004,a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration.Among them,51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa.The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the receiver function method (Liu et al.1996,2000).The main results can be summarized as follows:(1) A clear mountain root does not exist beneath the Tianshan Mountains,and the crust-mantle boundaries underneath the stations mostly have transitional structures.This implies that the material differentiation between the crust and mantle is not yet accomplished and the orogenic process is still going on.(2)The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike,and the crust-mantle boundary has a clear dislocation structure.Both of them correspond to each other.(3)The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km.This manifests that large vertical divergent movement took place between different blocks.This supports the discontinuous model of the Tianshan orogeny,and the Tarim block subduction is restricted only to the southern side of the South Tianshan.(4)Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the mountain-basin jointures on both sides of the mountain and between different blocks,and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain.This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain,the splicing of adjacent blocks and the fast uplift of the Tianshan Mountains.  相似文献   

19.
天山中部的地震定位和地壳活动性分析   总被引:11,自引:3,他引:8       下载免费PDF全文
利用宽频带流动台网记录的地震P波和S波到时,根据一维和三维地壳速度模型,对天山中部及其邻近地区1997~1998年的地震进行了重新定位,以重新确定的震源参数为依据分析了地壳的活动性.震源分布表明,造山带边缘和内部的大部分断裂都显示出活动的迹象,它们对天山的地壳构造变动起到明显的作用;塔拉斯-费尔干纳断裂的活动具有分段特征:其东南段以及西南天山的部分断裂目前活动比较弱,西北段受周边断裂的影响活动较强;另外造山带边缘的构造活动有向山前盆地渗透(Penetration)的趋势.30~40km深度的地震活动表明,天山中部的地壳中下层仍然具有一定的破裂条件,它们与壳幔边界附近热扰动的驱动有关,暗示小尺度地幔对流或软流层上涌等动力作用仍在持续进行.  相似文献   

20.
帕米尔东北侧地壳结构研究   总被引:50,自引:17,他引:50  
1998年在帕米尔东北侧伽师及其周边地区完成了两条深地震宽角反射/折射剖面. 结果表明,西昆仑、塔里木和天山在地壳速度结构、构造特征上显示出较大差异. 塔里木块体具有稳定地块的地壳结构特征,地壳平均速度较高(6.5km/s). 向南进入西昆仑,地壳明显增厚,厚度可达0km左右,且地壳平均速度偏低(6.0-6.2km/s),偏低的地壳平均速度主要来源于相对低速度的下地壳结构,反映了西昆仑褶皱系下地壳介质的特征. 向北进入天山后,地壳同样明显增厚,但增厚的程度低于西昆仑下,约为50-55km. 天山地壳同样具有明显低的平均速度(6.2km/s),显示了天山地壳相对"软"的特征,但天山地壳偏低的平均速度来源于广泛分布于中地壳的低速度层和速度偏低的下地壳. 在印度块体向北强烈推挤的作用下,该区地壳遭受强烈的不均匀变形,塔里木块体向南插入西昆仑下,向北插入天山下,形成了该区强烈地震频繁发生的深部构造环境.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号