首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. D. Do  J. Pan  Z. P. Jiang 《Ocean Engineering》2004,31(16):1967-1997
This paper proposes a nonlinear robust adaptive control strategy to force a six degrees of freedom underactuated underwater vehicle with only four actuators to follow a predefined path at a desired speed despite of the presence of environmental disturbances and vehicle’s unknown physical parameters. The proposed controller is designed using Lyapunov’s direct method, the popular backstepping and parameter projection techniques. The closed loop path following errors can be made arbitrarily small. Interestingly, it is shown that our developed control strategy is easily extendible to situations of practical importance such as parking and point-to-point navigation. Numerical simulations are provided to illustrate the effectiveness of the proposed methodology.  相似文献   

2.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

3.
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller  相似文献   

4.
This paper presents a discrete-time quasi-sliding mode controller for an autonomous underwater vehicle (AUV) in the presence of parameter uncertainties and a long sampling interval. The AUV, named VORAM, is used as a model for the verification of the proposed control algorithm. Simulations of depth control and contouring control are performed for a numerical model of the AUV with full nonlinear equations of motion to verify the effectiveness of the proposed control schemes when the vehicle has a long sampling interval. By using the discrete-time quasi-sliding mode control law, experiments on depth control of the AUV are performed in a towing tank. The controller makes the system stable in the presence of system uncertainties and even external disturbances without any observer nor any predictor producing high rate estimates of vehicle states. As the sampling interval becomes large, the effectiveness of the proposed control law is more prominent when compared with the conventional sliding mode controller  相似文献   

5.
This paper addresses the problem of simultaneous depth tracking and attitude control of an underwater towed vehicle. The system proposed uses a two-stage towing arrangement that includes a long primary cable, a gravitic depressor, and a secondary cable. The towfish motion induced by wave driven disturbances in both the vertical and horizontal planes is described using an empirical model of the depressor motion and a spring-damper model of the secondary cable. A nonlinear, Lyapunov-based, adaptive output feedback control law is designed and shown to regulate pitch, yaw, and depth tracking errors to zero. The controller is designed to operate in the presence of plant parameter uncertainty. When subjected to bounded external disturbances, the tracking errors converge to a neighbourhood of the origin that can be made arbitrarily small. In the implementation proposed, a nonlinear observer is used to estimate the linear velocities used by the controller thus dispensing with the need for costly sensor suites. The results obtained with computer simulations show that the controlled system exhibits good performance about different operating conditions when subjected to sea-wave driven disturbances and in the presence of sensor noise. The system holds promise for application in oceanographic missions that require depth tracking or bottom-following combined with precise vehicle attitude control.  相似文献   

6.
Hydrodynamic coefficients strongly affect the dynamic performance of an autonomous underwater vehicle. Although these coefficients are generally obtained experimentally such as through the planar-motion-mechanism (PMM) test, the measured values are not completely reliable because of experimental difficulties and errors involved. Another approach by which these coefficients can be obtained is the observer method, in which a model-based estimation algorithm predicts the coefficients. In this paper, the hydrodynamic coefficients are estimated using two nonlinear observers - a sliding mode observer and an extended Kalman filter. Their performances are evaluated by comparing the estimated coefficients obtained from the two observer methods with the values as determined from the PMM test. By using the estimated coefficients, a sliding mode controller is constructed for the diving and steering maneuver. It is demonstrated that the controller with the estimated values maintains the desired depth and path with sufficient accuracy.  相似文献   

7.
A fuzzy logic controller for ship path control in restricted waters is developed and evaluated. The controller uses inputs of heading, yaw rate, and lateral offset from the nominal track to produce a commanded rudder angle. Input variable fuzzification, fuzzy associative memory rules, and output set defuzzification are described. Two maneuvering situations are evaluated: track keeping along a specified path where linearized regulator control is valid; and larger maneuvers onto a specified path where nonlinear modeling and control are required. For the track keeping assessment, the controller is benchmarked against a conventional linear quadratic Gaussian (LQG) optimal controller and Kalman filter control system. The Kalman filter is used to produce the input state variable estimates for the fuzzy controller as well. An initial startup transient and regulator control performance with an external hydrodynamic disturbance are evaluated using linear model simulations of a crude oil tanker. A fully nonlinear maneuvering model for a smaller product tanker is used to assess the larger maneuvers  相似文献   

8.
无舵翼水下机器人路径跟踪控制研究   总被引:1,自引:0,他引:1  
针对无舵翼水下机器人的各种不同任务要求下的路径跟踪控制进行研究。通过模拟人的运动行为,建立了虚拟避碰声纳模型。根据地形跟踪的方法提出基于虚拟声纳的路径跟踪控制方法,并通过考虑纵向速度对于其他各个自由度运动的影响设计了运动控制器。通过海上试验验证了所提出的路径跟踪控制方法对于无舵翼水下机器人是可以满足实际需要的。  相似文献   

9.
This paper is concerned with the robust control synthesis of autonomous underwater vehicle(AUV) for general path following maneuvers.First,we present maneuvering kinematics and vehicle dynamics in a unified framework.Based on H∞ loop-shaping procedure,the 2-DOF autopilot controller has been presented to enhance stability and path tracking.By use of model reduction,the high-order control system is reduced to one with reasonable order,and further the scaled low-order controller has been analyzed in both the frequency and the time domains.Finally,it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.  相似文献   

10.
K.D. Do  J. Pan 《Ocean Engineering》2006,33(10):1354-1372
A method is proposed to design a new global controller that forces an underactuated ship to follow a reference path under disturbances induced by wave, wind and ocean-current. The controller is designed such that the ship moves on the path with an adjustable forward speed and its total velocity is tangential to the path. The ship under consideration is not actuated in the sway axis, and the mass and damping matrices are not assumed to be diagonal. Nonlinear damping terms are also included to cover both low- and high-speed applications. The new result is facilitated by choosing an appropriate origin of the body-fixed frame, designing a suitable filter of sway velocity, several nonlinear coordinate changes, the backstepping technique, and utilizing the ship dynamic structure. Experimental results on a model ship illustrate the effectiveness of the proposed method.  相似文献   

11.
邓春楠  葛彤  吴超 《海洋工程》2013,31(6):53-58
水下环境复杂多变,由于水流的不可预知性和多变性,潜器的水动力系数往往无法准确获取,使得依赖这种参数的潜器运动控制算法的应用受到了很大的局限。为了解决控制器对模型参数的依赖,设计了一种基于高阶滑模控制算法的模型无关控制器,并通过设置合理的过渡过程,解决了这种控制算法依赖初值的弊端。仿真结果表明,位置和姿态的控制能够快速的收敛,误差很小并且不依赖于初始条件,控制器需调节参数很少,并且算法简单,适用于工程的实际需要。  相似文献   

12.
Energy-optimal trajectories for underwater vehicles be computed using a numerical solution of the optimal control problem. A performance index consisting of a weighted combination of energy and time consumption is proposed. Collision avoidance is solved by including path constraints. Control vector parameterization with direct single shooting is used in this study. The vehicle is modeled with six-dimensional nonlinear and coupled equations of motion. Optimal trajectories are computed for a vehicle controlled in all six degrees of freedom by dc-motor-driven thrusters. Good numerical results are achieved  相似文献   

13.
The topic of this paper is the modeling, parameter identification, and analysis of the heave and pitch dynamics in a remote operated vehicle (ROV). The work presented here is motivated by an unusual dynamic behavior experienced on the Gaymarine Pluto-Gigas ROV: if the depth is regulated using a proportional controller, the ROV exhibits permanent oscillations at high forward speed. The purpose of this paper is to gain insight into ROV dynamics, so as to explain the reason for the oscillations. To this end, a dynamic gray-box model is developed and its uncertain parameters are identified from real data. The analysis of such a model shows that the nonlinear dynamics of the ROV contains a limit cycle. This discovery explains the observed oscillatory behavior. An interesting aspect of this limit-cycling behavior is that it is not due (as usual) to saturation effects of the actuators, but is intrinsic in the ROV dynamics.  相似文献   

14.
In the case of Autonomous Underwater Vehicle(AUV) navigating with low speed near water surface,a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance.Robust control is applied,which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer.Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system.For parameter uncertainty of motion model,the controller is designed with mixed-sensitivity method based on H-infinity robust control theory.Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.  相似文献   

15.
张培军  王强 《海洋科学》2015,39(5):106-113
基于1.5层浅水方程模式,利用条件非线性最优参数扰动(CNOP-P)方法,研究模式参数的不确定性对黑潮大弯曲路径预报的影响。研究表明,单个模式参数误差如侧向摩擦系数误差、界面摩擦系数误差以及在不同季节具有不同约束的风应力大小误差,对黑潮大弯曲路径预报的影响较小,并且对背景流场的选取具有一定的敏感性;所有模式参数误差同时存在时对黑潮大弯曲路径预报具有一定的影响,并且预报结果在9个月左右不能被接受。因此,要提高黑潮大弯曲路径的预报技巧,模式中的参数需要给出更好的估计。  相似文献   

16.
A six-degree-of-freedom model for the maneuvering of an underwater vehicle is used and a sliding-mode autopilot is designed for the combined steering, diving, and speed control functions. In flight control applications of this kind, difficulties arise because the system to be controlled is highly nonlinear and coupled, and there is a good deal of parameter uncertainty and variation with operational conditions. The development of variable-structure control in the form of sliding modes has been shown to provide robustness that is expected to be quite remarkable for AUV autopilot design. It is shown that a multivariable sliding-mode autopilot based on state feedback, designed assuming decoupled modeling, is quite satisfactory for the combined speed, steering, and diving response of a slow AUV. The influence of speed, modeling nonlinearity, uncertainty, and disturbances, can be effectively compensated, even for complex maneuvering. Waypoint acquisition based on line-of-sight guidance is used to achieve path tracking  相似文献   

17.
Nonlinear path-following control of an AUV   总被引:3,自引:0,他引:3  
A new type of control law is developed to steer an autonomous underwater vehicle (AUV) along a desired path. The methodology adopted for path-following deals explicitly with vehicle dynamics. Furthermore, it overcomes stringent initial condition constraints that are present in a number of path-following control strategies described in the literature. Controller design builds on Lyapunov theory and backstepping techniques. The resulting nonlinear feedback control law yields convergence of the path-following error trajectory to zero. Simulation results illustrate the performance of the control system proposed.  相似文献   

18.
A randomized kinodynamic path planning algorithm based on the incremental sampling-based method is proposed here as the state-of-the-art in this field applicable in an autonomous underwater vehicle. Designing a feasible path for this vehicle from an initial position and velocity to a target position and velocity in three-dimensional spaces by considering the kinematic constraints such as obstacles avoidance and dynamic constraints such as hard bounds and non-holonomic characteristic of AUV are the main motivation of this research. For this purpose, a closed-loop rapidly-exploring random tree (CL-RRT) algorithm is presented. This CL-RRT consists of three tightly coupled components: a RRT algorithm, three fuzzy proportional-derivative controllers for heading and diving control and a six degree-of-freedom nonlinear AUV model. The branches of CL-RRT are expanded in the configuration space by considering the kinodynamic constraints of AUV. The feasibility of each branch and random offspring vertex in the CL-RRT is checked against the mentioned constraints of AUV. Next, if the planned branch is feasible by the AUV, then the control signals and related vertex are recorded through the path planner to design the final path. This proposed algorithm is implemented on a single board computer (SBC) through the xPC Target and then four test-cases are designed in 3D space. The results of the processor-in-the-loop tests are compared by the conventional RRT and indicate that the proposed CL-RRT not only in a rapid manner plans an initial path, but also the planned path is feasible by the AUV.  相似文献   

19.
This paper presents an analytical solution derived for optimal control of the power take-off of a single-degree of freedom heave point absorber with constraints on the control force. The optimal control law turns out to be noncausal with a functional dependence on future velocities. To handle this problem, an algorithm for predicting future velocities is derived. Based on the solution the mean (time-averaged) absorbed power in a given sea-state is calculated. The performance of the indicated controller in terms of the mean absorbed power is close to the optimal value obtained by nonlinear programming and better than a controller with feedback from the present displacement, velocity and acceleration, and with optimized gain factors.  相似文献   

20.
基于模糊神经网络理论对水下拖曳体进行深度轨迹控制   总被引:2,自引:0,他引:2  
以华南理工大学开发的自主稳定可控制水下拖曳体为研究对象,首先通过水下拖曳体在拖曳水池样机中的试验取得试验数据后作为训练样本,采用LM BP算法,建立基于神经网络理论构建的可控制水下拖曳体轨迹与姿态水动力的数值模型。在此基础上设计了一个控制系统,它主要由两部分组成:基于遗传算法的神经网络辨识器和基于模拟退火改进的遗传算法的模糊神经网络控制器。以满足预先设定的拖曳体水下监测轨迹要求为控制依据,由控制系统确定为达到所要求的运动轨迹而应采用的迫沉水翼转角,以此作为输入参数,通过LM BP神经网络模型的模拟计算预报在这一操纵动作控制下的拖曳体所表现的轨迹与姿态特征。数值模拟计算结果表明:该系统的设计达到了所要求的目的;借助这一系统,可以有效地实现对拖曳体的深度轨迹控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号