首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Metal minerals in deep sea are considered to be the most important mineral resources in the 21st century. With the development of science and technology, deep-sea mining has gained more and more attention, and the pipeline lifting method is the most promising for mining. It is particularly important to use the pump as a key component in the pipeline upgrading. In this paper, the DEM–CFD method is used to study the solid–liquid two-phase fluid flow in the Deep-Sea lifting motor pump. Data about the distribution of pressure on the suction surface and pressure surface as well as the distribution of particles in the pump under different rotation speed can be obtained. Tests verify the efficiency and head of the pump by numerical simulation. It provides a theoretical method for the study of solid–liquid two-phase fluid flow in deep-sea mining.  相似文献   

2.
Abstract

Due to the low shear strength of deep-sea sediment, crawled mineral collector is easily slips in the deep-sea mining process, therefore, high-traction bionic grouser is needed to be studied to improve the working efficiency. Based on the rate-dependent characteristics of deep-sea sediment, a rate-dependent extended Drucker-Prager material constitutive model is used to define the deep-sea sediment. The Arbitrary Lagrange-Euler finite element (LEA-FE) was used to simulate the cutting process of different bionic grousers at different speeds. By comparing the simulation of different grousers, it was found that the maximum traction of grouser is related to the grouser parameters (distance L from the top to the curvature change point and curvature radius R). By analyzing the traction characteristics of different bionic grousers, the binary quadratic regression equation between maximum traction and bionic grouser parameters was established and the best bionic grouser parameters were obtained by the optimization algorithm. Based on the rate-dependent properties of deep-sea sediment, the traction characteristics at different speeds were analyzed and the relationship between maximum traction and speeds was established, the best bionic grouser walking speed was obtained, which can provide the theoretical basis for the crawled mineral collector.  相似文献   

3.
盖康雨  刘磊 《海洋工程》2023,41(3):110-122
海底矿石在软管中的水力输送是深海采矿的重要过程。采用计算流体动力学—离散元耦合的计算方法(CFD-DEM),对矿石颗粒在软管中的输送进行数值模拟,重点关注矿石颗粒的运动、分布规律以及管壁受到的颗粒作用力,分析输送速度和输送浓度(入射颗粒的体积分数)对输送过程的影响规律,探索管道中易发生堵塞、易受颗粒磨损的区域。结果表明,软管中颗粒的动力学特性与管道倾角、输送速度和输送浓度有关。颗粒主要沿管道截面底部推移,倾角较大的上升段出现处于悬移状态的颗粒;管道横截面内颗粒运动速度从上至下递减,截面中心处颗粒的速度接近输送速度。输送过程中颗粒的局部浓度(该区域颗粒与固液两相流的体积比)始终大于输送浓度,局部平均速度始终小于输送速度。上升段颗粒体积分数大于下降段,颗粒速度小于下降段。管道拱顶和谷底位置管壁所受颗粒作用力最明显,管壁最可能受颗粒磨损。  相似文献   

4.
In recent years, several experiments to assess the potential impacts due to deep-sea mining in the Pacific as well as the Indian Oceans have indicated the immediate changes and restoration patterns of environmental conditions in the marine ecosystem. The large volume of sediment(~ 500 × 107 m3 per year) estimated to be resuspended would be the major influencing factor in environmental impact in the mining area, leading to changes in availability of certain nutrients and composition of biomass, followed by gradual restoration. Important results have been obtained from these experiments, but in order to have a better understanding of the impacts and restoration processes, it will be necessary to improvise future experiments to resemble actual deep-sea mining in terms of scale and methodology.  相似文献   

5.
基于实际气体状态方程的深海采样压力补偿技术   总被引:1,自引:0,他引:1  
压缩气体通常用于深海压力保持采样器的压力补偿。回收的流体样品的压力和体积与预充气体高度相关。为了更好地理解高压下气体的行为,我们提出了一个新的基于压缩因子Z的实际气体状态方程,该方程是从实验数据得出的。然后基于该经验气态方程引入了样品压力和体积的理论计算方法。最后,通过采样器进行了在115MPa下的高压模拟采样实验,很好地验证了本文所提出的计算理论。  相似文献   

6.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

7.
The mining of deep-sea manganese nodules has been a topic of interest since J.L. Mero undertook his preliminary studies in the 1960s to evaluate the prospects for mining deep-sea nodules. Despite the great deal of investment in deep-sea mining over more than 40 years, there has still been no successful attempt to mine the deep-sea nodules on a commercial scale. One of the major problems is that the nodules cannot be brought to the surface with the necessary amounts of recoverable nickel, cobalt and zinc to warrant the initial high investment necessary for this operation. It therefore appears that in the short term, deep-sea manganese and Co-rich Mn crusts will not be mined on a commercial scale in the foreseeable future. Nonetheless, investigations of deep-sea mineral deposits by a number of nations will continue and enable us to understand the deep-sea environment in increasing detail, which is necessary in view of the great extent of the deep oceans which cover an area of about 66% of the Earth's surface.  相似文献   

8.
王英杰  阳宁  金星 《海洋工程》2012,30(2):100-104
两相流过泵回流试验是模拟水力提升系统紧急停泵情况下垂直管道中颗粒运动状态,紧急停泵时,可能会出现堵管、难于输送等现象。为提高管道水力输送安全性,采用三种不同的模拟结核颗粒(粒径分别为d≤10 mm,d≤20 mm,d≤50 mm),两种不同浓度(CV=5%,CV=8%),在两级泵额定流量Q=420 m3/h条件下进行了过泵回流试验,分析了试验结果,从多个方面总结了堵管原因。认为实际工程中应该严格控制颗粒上限粒径,采用合适的颗粒级配,并对管道定期进行清洗,尽量减少管道的大角度转弯和断面突变。  相似文献   

9.
Abstract

As the quest for deep-sea mineral resources is gaining momentum, environment and ocean mining have become important aspects of study. Because many of these deposits occur in international waters, the concern for environmental conservation in view of the effects of deep-sea mining is resulting in these effects being studied in different oceans, and efforts to develop regulations governing this exploitation are also underway at national and international levels. The impact assessment of deep-sea mining needs to encompass a variety of subjects, including environmental, socioeconomic, technological, and legal aspects. At the same time, effects of in situ environmental conditions on mining activities also need to be considered for effecient performance by the mining system. Differences in the degree of impact have been noticed during the mining simulation experiments by different investigating agencies. Therefore, interparameter comparisons, standardization of methods, and improvement in mining design are important considerations for proper utilization of resources, conservation of environment, and cost efficiency of the mining operations.  相似文献   

10.
符瑜  肖红  夏建新 《海洋工程》2019,37(4):63-69
随着陆地金属资源的日益枯竭,深海矿产资源已经成为各国的重要战略目标。在深海采矿过程中,海底锰结核的形状除了圆球状,还有长条状等,颗粒形状对固液两相流管道输送特性具有很大影响。基于固液两相流垂直管道提升输送试验系统,探究不同工况下长条状颗粒在垂直上升流中最小输送速度的变化规律及特性,并得到了长条状群体颗粒最小输送速度计算公式。结果表明:长条状颗粒在垂直管道中上升过程中,颗粒中心轴与输送方向趋向于垂直,使颗粒在管道截面的投影面积最大化;长条状单颗粒的最小输送速度随着颗粒长径比增大而减小;在不同长径比工况下,随着管段颗粒平均浓度减小,长条状群体颗粒的最小输送速度均增大,且随着长径比增大,群最小输送速度减小。  相似文献   

11.
海底底质的物理力学参数不同于陆地土壤,其极低的抗剪强度和承压强度对深海采矿车的行走性能提出高要求。分析基于车辆地面力学理论,开展了底质土力学特性试验研究,建立了深海底质力学模型。根据深海重载作业采矿车样机结构参数,在大型动力学仿真软件Recurdyn中建立了仿真模型。通过直线行走多体动力学仿真与直线行走海试试验的对比,验证了仿真模型的准确性。在此基础上开展了采矿车样机在深海软底质上的多种行走工况动力学仿真,分析与评价其行走性能。结果表明,采矿车样机可以顺利完成转弯、爬坡、越障等基本功能。该研究成果可为深海采矿车海底行走性能评估提供理论参考,为深海采矿车和软底质的相互作用力学研究提供借鉴。  相似文献   

12.
深海采矿船是未来人类获取深海矿产资源的重要装备,研究其水动力特性具有重要意义。月池和输运管是影响深海采矿船水动力特性的重要因素。以世界上第一艘超深水采矿船“鹦鹉螺新纪元”号为研究对象,基于三维势流理论,分析月池尺寸、输运管长度及内径对采矿船水运动特性的影响。结果表明:月池开口会使采矿船垂荡、纵荡和纵摇运动出现共振峰,峰值随着开口尺寸的增加而增大,其中垂荡运动峰值可增加将近2倍;输运管的存在会明显改变采矿船横摇运动固有周期,增大垂荡运动峰值,降低横摇运动峰值,对横荡和纵荡运动的影响亦较大,当输运管长度为 5 000 m,内径为0.480 5 m时,横荡和纵荡响应峰值能够达到无输运管时的3倍以上。通过探究月池开孔和输运管不同参数对采矿船运动的影响,为深海采矿船月池和输运管设计提供一定的借鉴和参考。  相似文献   

13.
深海采矿扬矿泵导叶区域粗颗粒通过特性试验研究   总被引:1,自引:0,他引:1  
蔡超  邱灏  曹斌  夏建新 《海洋工程》2016,34(2):64-70
在深海采矿系统中,海底矿石必须经过扬矿泵才能提升到海面船上,但矿石粒径较粗,容易在泵体中形成堵塞,尤其是在扬矿泵导叶区域,因此,研究粗粒在导叶中的运动特性对于保障系统安全工作具有重要意义。针对深海矿物粒径较大的特点,设计并制作了具有宽流道的扬矿泵流道模型,安装于管道输送试验系统。利用高速摄像机对扬矿泵导叶内粗颗粒运动特性进行了记录,并对其运动轨迹、碰撞情况以及颗粒速度等信息进行了分析。结果表明:颗粒在通过导叶区域时,运动轨迹与水流流向基本一致;颗粒与导叶发生碰撞位置主要集中于导叶背面入口处、导叶压力面中部和导叶背面出口处;颗粒粒径越小,跟随性越好,碰撞次数越少。试验结果可为扬矿电泵设计提供参考。  相似文献   

14.
The chemical states of iron in near-shore and deep-sea sediments were investigated by means of57Fe Mössbauer spectroscopy in combination with selective and nonselective chemical leachings. As far as a limited number of the sediments analyzed are concerned, Mössbauer spectra of near-shore sediments consist of high-spin paramgnetic ferrous (=1.13 mm/s, Eq=2.65 mm/s) and paramagnetic ferric (=0.35 mm/s, Eq=0.64 mm/s) components, while those of deep-sea sediments are composed of high-spin paramagnetic ferrous, paramagnetic ferrous, paramagnetic ferric and magnetic ferric (0.4 mm/s,H510 KG) components. The Fe2+/Fe3+ ratios of deepsea sediments are much smaller than those in near-shore sediments, while the total contents of iron in the former are much higher than those in the latter. This is principally due to the high contents of authigenic ferric oxides in deep-sea sediments. Further, in the aluminosilicate fraction, the Fe2+/Fe3+ ratios of deep-sea sediments are also smaller than those of near-shore sediments. This is probably attributed to high contents of clay minerals and authigenic aluminosilicates in deep-sea sediments relative to near-shore ones. The magnetic components in deepsea sediments are attributable to hematite, magnetite and/or maghemite.  相似文献   

15.
A computational fluid dynamics (CFD) model was developed to simulate the turbulent flow and species transport of deep-sea high temperature hydrothermal plumes. The model solves numerically the density weighted unsteady Reynolds-averaged Navier–Stokes equations and energy equation and the species transport equation. Turbulent entrainment and mixing is modeled by a kε turbulence closure model. The CFD model explicitly considers realistic vent chimney geometry, vent exit fluid temperature and velocity, and background stratification. The model uses field measurements as model inputs and has been validated by field data. These measurements and data, including vent temperature and plume physical structure, were made in the ABE hydrothermal field of the Eastern Lau Spreading Center. A parametric sensitivity study based on this CFD model was conducted to determine the relative importance of vent exit velocity, background stratification, and chimney height on the mixing of vent fluid and seawater. The CFD model was also used to derive several important scalings that are relevant to understanding plume impact on the ocean. These scalings include maximum plume rise height, neutrally buoyant plume height, maximum plume induced turbulent diffusivity, and total plume vertically transported water mass flux. These scaling relationships can be used for constructing simplified 1-dimensional models of geochemistry and microbial activity in hydrothermal plumes. Simulation results show that the classical entrainment assumptions, typically invoked to describe hydrothermal plume transport, only apply up to the vertical level of ~0.6 times the maximum plume rise height. Below that level, the entrainment coefficient remains relatively constant (~0.15). Above that level, the plume flow consists of a pronounced lateral spreading flow, two branches of inward flow immediately above and below the lateral spreading, and recirculation flanking the plume cap region. Both turbulent kinetic energy and turbulence dissipation rate reach their maximum near the vent; however, turbulent viscosity attains its maximum near the plume top, indicating strong turbulent mixing in that region. The parametric study shows that near vent physical conditions, including chimney height and fluid exit velocity, influence plume mixing from the vent orifice to a distance of ~10 times the vent orifice diameter. Thus, physical parameters place a strong kinetic constraint on the chemical reactions occurring in the initial particle-forming zone of hydrothermal plumes.  相似文献   

16.
曾志刚 《海洋与湖沼》2021,52(6):1333-1349
海底热液活动调查研究是深海进入、深海探测和深海开发的切入点之一。近十年来,中国在西太平洋弧后盆地、东太平洋海隆、大西洋洋中脊和印度洋脊,发现了一批新的海底热液活动区,围绕着热液活动区的硫化物、流体、热液柱、生物等热液产物开展了调查研究,构建了海底热液地质学,提出了热液活动、冷泉及天然气水合物的同源异汇假说,出版了《海底热液地质学》、《现代海底热液硫化物成矿地质学》、《现代海底热液活动》、《东太平洋海隆热液地质》专著,获得了一批调查研究成果。未来,聚焦海底热液活动的深部过程及其资源环境效应关键问题,发展海底热液活动探测技术,拓展极地海底热液活动调查研究新领域,围绕烟囱体、热液柱、含金属沉积物、流体以及热液区生物等热液产物,开展深入、系统的调查研究工作,无疑将推动海底热液地质学取得新的进展。  相似文献   

17.
The volume scattering function and size distribution of suspended particles in the surface water were determined in the North Pacific. The relationship between the scattering coefficient estimated from observed volume scattering function and cross-section concentration of the particles greater than 2.4m in diameter was found to be linear in both northern and southern regions of central North Pacific. Difference in the constant of proportionality between two regions, however, was very great. Moreover the constant in the southern region was too large compared with the values obtained by the Mie theory. This is considered to be due to the fact that particles smaller than 2.4m which were not measureable by the Coulter Counter, were neglected in the calculation of cross-section concentration. If small particles are taken into consideration, total cross-section concentration and scattering coefficient in the two regions tend to follow a linear relation. From the correlation between the scattering coefficient computed from size distribution and the volume scattering function, the refractive index of particles was estimated to be 1.03–1.05. By the same procedure, the refractive index of particles in Tateyama Harbour where the water was very turbid, was estimated to be also 1.03–1.05. This is in contrast to the result for the refractive index of particles originating from the river which flows into the harbour. This index was found to be 1.10–1.20.  相似文献   

18.
平端深海偏顶蛤(Gigantidasplatifrons)是广泛分布于西太平洋深海热液和冷泉生态系统中的优势种和共有种,也是深海化能生态系统中重要的生境营造种。以南海F冷泉平端深海偏顶蛤为研究对象,基于贝壳日生长轮方法,分析了平端深海偏顶蛤的年龄与生长速率,建立了其年龄与贝壳壳长关系的生长方程。同时,结合获得的生长方程,分析了南海F冷泉采样点(119.285 6°E,22.115 4°N)平端深海偏顶蛤种群的年龄结构。研究结果表明,采样获得的平端深海偏顶蛤种群的最大壳长为11.4 cm,最大寿命为13.5龄。研究区域的贝壳长度分布集中在4~7 cm,占比60%;年龄分布集中在2~4龄,占比49.7%。相关研究结果为进一步开展平端深海偏顶蛤的生长研究提供了基础数据,有助于深入了解冷泉区域的种群动态变化规律。  相似文献   

19.
Waves, topographic features and material properties are known as the most important factors affecting the sediment movement and coastal profiles. In this study, considering wave height (H=6.5, 17, 16, 20, 23, 26 and 30 cm) and period (T=1.46 and 2.03 s), bed slope (m=1/10, 1/15 and 1/25) and sediment diameter (d50=0.18, 0.26, 0.33 and 0.40 mm), cross-shore sediment movement was investigated using a physical model and various offshore bar geometric parameters were determined by the resultant erosion profile. The offshore bar geometric characteristics are the distance between the bar crest and the shoreline, the depth from bar crest to the still-water level, the distance between the equilibrium point and the shoreline, the distance between the closure point and the shoreline, and the bar volume. Dimensional and non-dimensional equations were obtained by using non-linear regression methods through the experimental data and compared with those of previously developed equations. The results have indicated that the proposed equations fit to experimental data better than previously developed equations.  相似文献   

20.
The impact load (equivalent impact height) applied to deep-sea sediment by a walking mining machine was first deduced by the energy conservation principle, and the simulative soil was prepared based on the deep-sea sediment collected from the Pacific C-C mining area. The self-designed impact compressive creep tests of the simulative soil were conducted under different ground stresses and impact heights, in order to determine impact compressive creep parameters using a K-H rheological model. Test results show that the impact compressive creep curves have three similar creep stages (transient creep, unstable creep, and stable creep) to static compressive creep curves, where the transient creep deformation and total deformation at the unstable creep stage decrease with the impact load. Among the three impact compressive creep parameters (K1, K2, β) of the simulative soil, K1 is first increased with impact height and finally fluctuated to a certain stable value, while K2 and β are approximately linearly increased with impact height. The maximum subsidence of the mining machine under a specific designed ground stress and walking velocity predicted by the impact compressive creep constitutive equation can be used for safety assessment of the mining machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号