首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
利用有关考古资料以及前人的研究成果,分析了山东地区气候与古代文化的关系以及气候对海岸变迁的影响.结果表明,距今8500~7500年,该地区曾经是气候温暖、水网密布的亚热带景观.这一时期,遗址附近有沼泽和大面积水域,山地有森林覆盖,反映为湿热的亚热带气候环境,其植被具有明显的草原特征.距今7500~6300年,气候较今日温暖湿润,山林灌木丛生,芦苇草地茂密,河谷湖泊发育,大致与现在长江流域的气候条件相似.距今6000~5500年,气候、地貌、自然景观与今日有别,气候温暖湿润,处于大西洋期,一般称之为气候最宜时期.气温高出现在4~5 ℃,降雨较目前多.植被以阔叶树种占优势,并含少量亚热带成分.森林茂密,草木繁茂,湖沼交错,水域面积较大.距今5000~4500年,气候温和略干,气温有所下降.距今4000年前后,总的气候趋势是向干凉方向发展,雨量减少,湖沼水域收缩,自然环境发生急剧变化,大规模的洪水和降温事件,使人类文明活动受到了极大的限制.这一显著变化,也说明自然环境对古代文化的形成、发展、消亡所产生的影响是十分巨大的.  相似文献   

2.
本文的分析及对比依据是以不同森林覆被率分区。从分析大兴安岭森林植被区的气候特点入手,重点探讨了森林生态对气候长期影响的气候效应。指出大兴安岭森林植被使年平均气温偏低1.6℃(剔除地理地形影响外),且林区的年平均气温各年代间变化振幅偏小。指出年降水量各年代的均方差、变异系数、变率等均比对比区明显小得多。研究结果表明森林植被有维持气候稳定性作用等等。  相似文献   

3.
宋明琨 《气象》1985,11(3):18-21
贡嘎山地处亚热带,其东坡主要受东南季风影响,潮湿多雨,冬暖夏湿,云雾多,日照少,属于亚热带湿润季风气候;西坡主要受西南季风影响,气温低,气温日较差小, 日照强烈,降水较多,属于亚热带高原气候。海拔4900米以下生长着茂密的高山植物和森林,放出大量氧气,十分有利于登山探险和旅游。海拔5000米以上,山势陡峭,发生雪崩较多。到贡嘎山登山探险选择4、5、10、11月及9月下旬为宜,登山旅游选择5、8、10、11月为宜。  相似文献   

4.
江苏吴县嗣庭山是我国柑桔北缘的著名产区,面积10,700余亩,投产面积6,500亩,年产柑桔18—20万担,由于1976年冬到1977年春天气严寒,使柑桔遭受到了近50年来(1930年以来)从所未有的严重冻害,受冻桔树占栽培面积的50%,产量也比正常年份减产约50%,苗木受冻约十万余株。现在我们就造成这次严重冻害的气象条件分析如下: 一、天气条件与柑桔冻害 柑桔是亚热带常绿果树,喜温暖湿润的气候,洞庭山则是凭借着太湖水域所特有的小气候条件而使柑  相似文献   

5.
浙江省位于我国东部沿海,属于典型的亚热带季风气候,具有四季分明、气温适中、光照较多、雨量丰沛、空气湿润等气候特征。1971—2009年,浙  相似文献   

6.
西南地区植被变化与气温及降水关系的初步分析   总被引:7,自引:0,他引:7  
利用卫星遥感植被归一化指数(NDVI)资料和西南地区96个实测台站的月平均气温以及降水资料,初步分析了西南地区植被变化与气温及降水的关系。结果表明:近20年来西南地区植被覆盖状况较好,其中夏季植被覆盖最好,冬季植被分布空间差异最大;西南地区植被整体呈增加趋势,同时也存在较明显的季节和区域差异:春季西南大部分地区植被以增加为主,夏季、秋季全区以减少为主,冬季则以增加为主且存在明显的东西反向特征,东部减少西部增加。时滞互相关分析表明:西南地区11~2月份的植被对超前其1~2个月的气温以及夏季的植被对春季气温的敏感性比较大,3~4月的植被生长对上年夏季的降水敏感性比较大;同期时,1~3月植被和气温为正相关关系,6~9月的植被生长和降水为明显的负相关关系;在植被超前气候的条件下,1~2月的植被和滞后1~2个月的气温呈正相关关系,与滞后1个月的降水有明显的负相关关系。   相似文献   

7.
国世友  邹立尧  刘春生 《气象》2003,29(S1):1-5
使用84个观测站1961~1990年的气候资料阐述了黑龙江省热量资源、降水资源、光资源及风资源的分布状况。根据气候资源分布状况,针对林业生产的需求把黑龙江省分成七个林业气候区:温暖半干旱区、温暖半湿润区、温暖湿润区、温和湿润区、温凉湿润区、冷凉湿润区、寒冷湿润区;同时分析了各个林业气候区森林火灾的发生状况。为合理开发利用气候资源和森林资源提供了一定的依据。  相似文献   

8.
利用2000—2017年广西典型喀斯特区MODIS NDVI卫星遥感影像,研究近20 a来喀斯特地区植被及不同等级石漠化区植被时空变化状况,分析降水及气温与喀斯特地区植被变化的相关性,探讨植被变化与气象因子的关系。结果表明:(1)研究区植被及各石漠化等级区植被年内NDVI变化特征均表现出"夏秋高,冬春低"的趋势,随着石漠化等级加重,植被NDVI均值降低。植被NDVI峰值多出现在8月上旬至9月上旬,谷值出现在1月和2月上旬。但以灌草为主的轻、中、重石漠化区植被NDVI峰值出现时间较早,以乔木为主的潜在石漠化区植被NDVI峰值出现时间较迟。(2)2000—2017年百色全喀斯特地区及各等级石漠化区植被NDVI均呈改善趋势,且重度石漠化区植被改善趋势最明显,轻度石漠化区次之。研究区植被多为稳定变化和改善趋势,改善、变化不大和退化面积比例分别为38.27%、57.86%、4.87%。(3)平均气温和降水量与研究区植被NDVI相关性均较高,且平均气温与植被NDVI的相关性总体好于降水量。年尺度气温和降水量对植被NDVI影响均较明显,季度尺度上,秋季和春季气温降水对植被NDVI影响较大,冬季影响最小。目前气候变暖引起的增温幅度有利于研究区植被生长,春夏季降水减少、秋季降水增多的气候变化趋势更利于研究区植被改善。  相似文献   

9.
根据当前国内的研究成果,总结了地质时期第四纪(距今250多万a)以来黄土高原演变与气候变迁之间的关系,其主要关系可归纳为:①第三纪以来喜马拉雅造山运动引起的中国大陆一系列差异性升降构造变化是黄土高原形成的决定性因素;②更新世时期青藏高原隆起所引起的强西风气流把中亚内陆沙漠地区的大量粉尘带到今天的黄土高原地区,形成了黄土高原;③现代季风是更新世时期青藏高原上升到某个高度之后的产物,但随着青藏高原高度不断增长,它对湿润夏季风的屏障作用越来越强,黄土高原气候开始由温暖湿润向干冷和干旱化方向发展,相应地植被种类和分布发生调整;④黄土高原植被对气候波动的适应具有重复性,即植物随着气候冷暖干湿的波动,生长区域南北移动;⑤黄土高原水土流失在更新世时期主要是自然侵蚀造成的,全新世时期在遵循自然规律继续进行的基础上,又叠加了人类活动影响,使之呈现加速发展的特点;⑥黄土高原水土流失受地质、降水、植被与人类活动等多种因素的影响,空间差异极其显著。  相似文献   

10.
青藏高原1981~2000年植被净初级生产力对气候变化的响应   总被引:11,自引:3,他引:8  
基于分辨率为0.1°×0.1°的植被、土壤和气象数据,利用大气-植被相互作用模型(AVIM2)模拟研究了青藏高原1981~2000年植被净初级生产力(NPP)对气候变化的响应。结果表明:青藏高原近20年自然植被(森林、草地和灌木)受气温和降水量增加的影响,NPP总量呈现上升趋势。灌木和森林NPP总量分别以每年1.14%和0.88%的速度增加,均达到统计上的显著性水平。草地NPP上升趋势不如灌木和森林显著。降水量变化对森林和草地NPP的影响高于气温变化对它们的影响,而降水量变化对灌木的影响则小于气温变化影响。总的区域平均来看,尽管1981~2000年青藏高原年平均净辐射通量略有降低,但由于平均气温以0.058 ℃·a-1的速率增加,且降水量略有增长,降水量与气温的共同作用使得青藏高原植被NPP总量呈上升趋势。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号