首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical isostasy of the lithosphere in the South Atlantic Ocean was studied using information on gravity anomalies and bathymetry with additional constraints imposed by the altimetric geoid. The isostatic responses (admittances) over the Walvis Ridge, Rio Grande Rise and Trindade Seamount Chain were computed using a three-dimensional algorithm. The eastern Walvis Ridge and the Rio Grande Rise have the same response, which is well explained by an Airy model of isostasy. The other features are regionally supported. A variation in the thickness of the elastic plate was found along the western Walvis Ridge. A high value of the elastic plate thickness (20 km) was found under the Trindade Chain. Geodynamic implications are discussed in the light of these results.  相似文献   

2.
Igneous material dredged from the Rio Grande rise, South Atlantic Ocean, includes basaltic rocks, some having mafic nodules and megacrysts, and volcanic breccias composed largely of basaltic fragments. These samples represent the only volcanic rocks recovered from this aseismic rise. Bulk compositions show alkalic basalt, trachybasalt, and trachyandesite; the rock types are similar to those of nearby Tristan da Cunha, Gough, and the Walvis ridge. Microprobe analyses show basaltic groundmass to have olivine, Fo85, pyroxene, Fs13Wo46, feldspar, An71, plus interstitial alkali feldspar. Mafic nodules and megacrysts have olivine, Fo86–90 and pyroxene Fs6–7.5Wo45–46; Al2O3 2.5–4 wt.%.The Rio Grande rise rocks have compositional characteristics of an alkalic basaltic suite, and not of mid-ocean ridge tholeiite. Based on mineral compositions, nodules and megacrysts in basalt are interpreted as cognate inclusions. Because oceanic alkalic basaltic rocks are almost invariably associated with islands and seamounts, the Rio Grande rise probably represents a series of alkalic-basalt islands that formed and eventually subsided during rifting of the South Atlantic; the dredged volcanic breccias are probably slump deposits from those volcanoes. This interpretation lends support to the Rio Grande rise having formed at a hot spot, but the possibility of alkalic rocks having formed along fracture zones should not be discounted.  相似文献   

3.
《Geofísica Internacional》2014,53(3):241-257
We used the VLF technique to infer fault or major fracture zones that might serve as path for contaminant waste fluids in the Matatlan dumpsite, in Guadalajara, western Mexico. To interpret the data we used the Fraser, and Karous-Hjelt filters.Profiles were interpreted with 2D direct modeling based on Karous-Hjelt modified filter (K-H). The Fraser and Karous-Hjelt conjugated filter were applied to the entire data. The results of both techniques show similarities in the directions and positions of anomalous features, which are assumed fault or fracture zones. We observed one fault zone at the centre of the site, with a NEE-SWW strike. Other important inferred structures have NW-SE directions at the western part of the site.The cooperative use of both techniques, based on K-H filter and the Fraser filter give results as an N-S inferred structure in the westernmost part of the zone, as well as NW-SE linear anomalies, mainly in the western half of the site. The N-S structure has the same direction as that of Rio Grande de Santiago Canyon. The NW-SE features coincide with the directions of the Tepic-Zacoalco rift. Others NE-SW lineaments are located towards the centre of the area. These facts coincide strongly with the predominance of fracture groups show in the fracture analysis. The inferred structures could serve as conduits for the leachates to migrate towards the Coyula canyon as well as towards the Rio Grande de Santiago Canyon.Statistic analysis of fracture orientations showed N-S (A), N75-80E (B), N60-65W (C), and N25-30W (D) main directions, and N45-55E (E), and 90E (F) secondary directions. Group A coincides with the direction of the Rio Grande de Santiago Canyon, whereas pattern F have the same direction as Coyula Canyon.  相似文献   

4.
Sixty new measurements together with published heat flow data in the South Atlantic between 20°S and 35°S latitude have been analyzed. Heat flux is greater through the eastern Mid-Atlantic Ridge flank and basin than their counterparts on the west but the standard deviation or spatial variation is greater on the west, contrary to expectation based on sediment thickness. The variance in the data indicates that this asymmetry in mean heat flux is statistically significant at 87% confidence level. A pair of ridge-flank minima appear in a composite trans-Atlantic profile of heat flux versus sea-floor age, suggesting hydrothermal circulation in the young oceanic crust. The Walvis Ridge has a mean excess heat flux of 28 mW m?2 (0.7 μcal cm?2 sec?1) above the surrounding Cape and Angola Basins, and decreases along the ridge towards the northeast. Consistent with the apparent asymmetric distribution in the South Atlantic, it is also significantly higher than that of the Rio Grande Rise. We hypothesize that the trend and larger mean heat flux of the Walvis Ridge is best explained by a hot-spot origin, perhaps combined with higher radioactivity in the crust. However, the morphologic and heat flow differences between the Walvis Ridge and Rio Grande Rise suggest that these features have different geologic histories.  相似文献   

5.
《Marine pollution bulletin》2014,78(1-2):209-212
This study reports results of analysis of sediment cores collected from the Patos Lagoon estuary. This estuary receives materials from land runoff into Patos and Mirim lagoons and from exchange with the adjacent South Atlantic Ocean through a narrow inlet. Sediment from these sources is mostly natural, but additional contributions associated with source/activities related to the port of Rio Grande. The aim of this study was to estimate rates of accumulation of the sediments and to assess the significance of metal inputs from these activities relative to natural inputs. Our results indicate an average sedimentation rate of 0.3 cm/yr and that the transport of suspended solids from offshore sources into the estuary was enhanced after the deepening of the channel and construction of the breakwaters (in the early 1900). Results for metal accumulation in these sediments suggest that there have been only minor enrichments which can be attributed to anthropogenic sources.  相似文献   

6.
Anomalous topographic highs are found along many large oceanic fracture zones, frequently in the form of transverse ridges elongated parallel to the fractures both within and outside of the transform zone. These crustal highs are one or more kilometers shallower than the adjacent “normal” crust of equivalent age. Their elevation is frequently higher than the axial zone of lithospheric accretion. Geophysical and petrological data from the Vema, St. Paul, Romanche (Atlantic Ocean), Owen (Indian Ocean), Alula (Gulf of Aden), and other fracture zones suggest that the anomalous transverse ridges are not the result of excess volcanism, but rather of tectonic uplift of upper mantle and crustal blocks.Factors which may determine vertical tectonism along fracture zones include: (1) horizontal thermal conduction across a fracture zone from a lithospheric accreting segment; (2) viscodynamic forces operating in a fracture zone close to its intersection with an accreting segment; and (3) compressional and tensional horizontal stresses operating along a fracture zone, and created by several causes, the major one being small changes in the direction of spreading. Among these various factors, compressional and tensional horizontal stresses are probably the main cause of vertical tectonism in fracture zones. During the vertical motion of upper mantle/crustal blocks, ultramafic rocks, due to their physical properties, are uplifted preferentially.One of the implications of fracture zone vertical tectonism is that the age/depth of the crust relationship may not apply in regions with large fracture zones. In one well-documented case, a transverse crustal block at the Romanche fracture zone subsided during the last 5 m.y. at an average rate more than one order of magnitude faster than crust of equivalent age.  相似文献   

7.
The present Pacific Ocean differs significantly in its structure and evolution from the expanding Atlantic Ocean. The Pacific is asymmetric. Its mid-ocean ridge is located not along its median line but is closer to South America and adjoins North America. The Pacific is surrounded by a ring of subduction zones but has marginal seas only at its Eurasian margins. After the breakup of Pangea, the Atlantic began to open and the Pacific began to close. This paper examines the evolution of the Pacific Ocean and, in particular, the formation mechanisms of its present structures. Numerical modeling of the long-term drift of a large continent is performed, with the initial position of the continent corresponding to the state after the breakup of the supercontinent. At first the continent, driven by the nearest descending mantle flow, begins to approach a subduction zone. Since the mantle flows beneath a large continent have different directions, its velocity is a few times lower than that of the mantle flows near the subduction zone. As a result, a zone of extension arises at the active continental margin and a fragment is broken off from the continent; this fragment rapidly moves away and stops above the descending mantle flow as in a trap. A marginal sea forms at the active continental margin. The continent continues its slow movement toward the subduction zone. The oceanic lithosphere, which earlier sank vertically, begins to descend obliquely. This evolutionary stage corresponds to the present position of Eurasia. The modeling shows how the interaction of the continent with the mantle causes the subduction zone to roll back toward the ocean. Subsequently, the continent nevertheless catches up with the subduction zone, and they move together for a while. The marginal sea then closes and high compressive stresses arise at the active continental margin. This state corresponds to the present position of South America. During the subsequent drift, the continent together with the subduction zone reaches the mid-ocean ridge and partially overrides it. This state corresponds to North America, which was the first to break off from Pangea and passed through the stages of both Eurasia and South America. The large and slowly moving Eurasia, which formed only at the time of Pangea, is still in the first evolutionary stage of the Pacific Ocean closure.  相似文献   

8.
方益志  薛梅 《地震学报》2021,43(2):204-214
本文对大西洋中北部两侧五个地震台站2015年记录到的地震数据进行处理,计算噪声功率谱密度和概率密度函数,并通过极化分析对双频微地动不同周期的主导源区方位角分布进行了分析.研究结果显示:大西洋中北部台站双频微地动发生显著分裂,各台站的峰值周期各不同,且来自相同方向和不同方向的双频微地动都有可能产生双频微地动分裂;大西洋中...  相似文献   

9.
Total dissolved chromium concentrations have been determined for four vertical profiles from Baffin Bay, the Labrador Sea and the northwest Atlantic Ocean. Chromium concentrations of 3.3 to 5.2 nM are found. While the vertical distribution of chromium in the study area is largely controlled by advective processes, the profiles show a small depletion in surface water with increase to a more constant level at depth. Surface depletion and correlations between chromium and nutrients indicate biogeochemical cycling of chromium. At one station, close to the Gibbs fracture zone, a distinct chromium maximum is observed. This feature centred at 3200 m is deeper than the core of the ambient water mass which is advected westward from the Eastern Basin of the Atlantic Ocean through the Gibbs fracture zone.  相似文献   

10.
We present the first regional three-dimensional model of the Atlantic Ocean with anisotropy. The model, derived from Rayleigh and Love wave phase velocity measurements, is defined from the Moho down to 300 km depth with a lateral resolution of about 500 km and is presented in terms of average isotropic S-wave velocity, azimuthal anisotropy and transverse isotropy.The cratons beneath North America, Brazil and Africa are clearly associated with fast S-wave velocity anomalies. The mid-Atlantic ridge (MAR) is a shallow structure in the north Atlantic corresponding to a negative velocity anomaly down to about 150 km depth. In contrast, the ridge negative signature is visible in the south Atlantic down to the deepest depth inverted, that is 300 km depth. This difference is probably related to the presence of hot-spots along or close to the ridge axis in the south Atlantic and may indicate a different mechanism for the ridge between the north and south Atlantic. Negative velocity anomalies are clearly associated with hot-spots from the surface down to at least 300 km depth, they are much broader than the supposed size of the hot-spots and seem to be connected along a north-south direction.Down to 100 km depth, a fast S-wave velocity anomaly is extenting from Africa into the Atlantic Ocean within the zone defined as the Africa superswell area. This result indicates that the hot material rising from below does not reach the surface in this area but may be pushing the lithosphere upward.In most parts of the Atlantic, the azimuthal anisotropy directions remain stable with increasing depth. Close to the ridge, the fast S-wave velocity direction is roughly parallel to the sea floor spreading direction. The hot-spot anisotropy signature is striking beneath Bermuda, Cape Verde and Fernando Noronha islands where the fast S-wave velocity direction seems to diverge radially from the hot-spots.The Atlantic average radial anisotropy is similar to that of the PREM model, that is positive down to about 220 km, but with slightly smaller amplitude and null deeper. Cratons have a lower than average radial anisotropy. As for the velocities, there is a difference between north and south Atlantic. Most hot-spots and the south-Atlantic ridge are associated with positive radial anisotropy perturbation whereas the north-Atlantic ridge corresponds to negative radial anisotropy perturbation.  相似文献   

11.
Wind-induced subduction at the South Atlantic subtropical front   总被引:1,自引:1,他引:0  
The South Atlantic Subtropical Front, associated with the eastward-flowing South Atlantic Current, separates the colder, nutrient-rich waters of the subpolar gyre from the warmer, nutrient-poor waters of the subtropical gyre. Perturbations to the quasi-geostrophic, eastward flow generate meanders and filaments which induce cross-frontal exchange of water properties. Down-front winds transport denser waters from the South over warm waters from the North, inducing convective instability and subduction. Such processes occur over spatial scales of the order of 1 km and thus require high horizontal spatial resolution. In this modeling study, a high-resolution (4 km) regional grid is embedded in a basin-wide configuration (12 km) of the South Atlantic Ocean in order to test the importance of submesoscale processes in water mass subduction along the subtropical front. Stronger and more numerous eddies obtained in the high-resolution run yield more intense zonal jets along the frontal zone. Such stronger jets are more susceptible to instabilities, frontogenesis, and the generation of submesoscale meanders and filaments with \(\mathcal {O}(1)\) Rossby number. As a consequence, vertical velocities larger than 100 md 1 are obtained in the high-resolution run, one order of magnitude larger than in the low-resolution run. Wind-driven subduction occurs along the frontal region, associated with negative Ertel potential vorticity in the surface layer. Such processes are not observed in the low-resolution run. A passive tracer experiment shows that waters with density characteristics similar to subtropical mode waters are preferentially subducted along the frontal region. The wind-driven buoyancy flux is shown to be much larger than thermal or haline fluxes during the wintertime, which highlights the importance of the frictional component in extracting PV from the surface ocean and inducing subduction, a process that has been overlooked in subtropical mode water formation in the region.  相似文献   

12.
The variety of active, exhumed, and buried limestone landforms of northern England, North Wales, and the Isle of Man arises in part from the way in which Dinantian (Lower Carboniferous) sedimentation was affected by a tilt-block basement structure evolved during the closure of the Iapetus Ocean suture to the north, and partly to subsequent plate tectonic movements associated with the closure of the proto-Tethys ocean, the opening of the Atlantic Ocean and the Alpine orogeny. Landforms created during the Dinantian now form important exhumed and buried landscape features. The Permian half-graben structures of the eastern Irish Sea-Cheshire-Worcester Basins account for many of the contrasts between the upland karsts of the Pennines and the lowland karsts of coastal areas.  相似文献   

13.
Benthic foraminiferal oxygen and carbon isotopic records from Southern Ocean sediment cores show that during the last glacial period, the South Atlantic sector of the deep Southern Ocean filled to roughly 2500 m with water uniformly low in δ13C, resulting in the appearance of a strong mid-depth nutricline similar to those observed in glacial northern oceans. Concomitantly, deep water isotopic gradients developed between the Pacific and Atlantic sectors of the Southern Ocean; the δ13C of benthic foraminifera in Pacific sediments remained significantly higher than those in the Atlantic during the glacial episode. These two observations help to define the extent of what has become known as the ‘Southern Ocean low δ13C problem’. One explanation for this glacial distribution of δ13C calls upon surface productivity overprints or changes in the microhabitat of benthic foraminifera to lower glacial age δ13C values. We show here, however, that glacial-interglacial δ13C shifts are similarly large everywhere in the deep South Atlantic, regardless of productivity regime or sedimentary environment. Furthermore, the degree of isotopic decoupling between the Atlantic and Pacific basins is proportional to the magnitude of δ13C change in the Atlantic on all time scales. Thus, we conclude that the profoundly altered distribution of δ13C in the glacial Southern Ocean is most likely the result of deep ocean circulation changes. While the characteristics of the Southern Ocean δ13C records clearly point to reduced North Atlantic Deep Water input during glacial periods, the basinal differences suggest that the mode of Southern Ocean deep water formation must have been altered as well.  相似文献   

14.
Alonso  Rodrigo  Solari  Sebastián 《Ocean Dynamics》2021,71(8):823-850
Ocean Dynamics - A detailed analysis of how the wave climate gradually varies from the Atlantic coast to the Rio de la Plata (RDP) estuary coast of Uruguay is undertaken, exploiting a recently...  相似文献   

15.
张之立  方兴  阎虹 《地震学报》1987,9(1):28-36
山西地堑系又名汾渭地堑系,是新生代发育的小型大陆裂谷带,它有着大陆裂谷带的主要特征.本文根据裂谷和地堑是断裂带发展和控制结果的观测事实,应用断裂力学方法研究了山西地堑形成的力学机制.本文提出一个三维力学模式,分析了由断裂带扩展形成地堑的力学过程,并计算了山西地堑的 Z 形图案中的剪切段与拉伸段之间的夹角,该角度的大小与区域应力场方向、原始断裂带深度和长度的比值,以及断裂带周围介质的力学性质等因素有关,同时还发现,拉张区的总体方向总是指向区域主压应力作用方向.因此,可以根据拉张区的总体方向来确定区域主压应力方向;反之,也可以根据区域主压应力方向来判断拉张段的取向.本文同时分析了由地震资料得到的结果并进行了比较.此外,我们还应用本文提出的方法研究了国际上一些有名的地堑,如莱茵地堑、贝加尔湖地堑和北美洲西部的利奥格兰特裂谷等,这些地堑系的拉张区和剪切区的空间分布特征,也能得到较好地解释.   相似文献   

16.
The Namibian margin is dominated by the late Proterozoic to early Cambrian fold belts of the Damara Orogen, which wrap around and separate the Congo and Kalahari Cratons. This mosaic of relatively ‘soft’ fold belts and ‘hard’ cratons apparently controlled the path for the opening of the South Atlantic in the early Cretaceous. The continents split along the coast-parallel fold belts of the Damara Orogen while the inland fold belt (Damara Belt) was effected by extension and widespread igneous intrusion but never developed to the rift stage. This paper is concerned with the interpretation of magnetotelluric (MT) data along a 200 km NW-SE profile across the Damara Belt in NW Namibia. The regional, two-dimensional electrical resistivity model and the induction vector data exhibit three distinctive zones: (i) a generally very resistive upper crust which is typical for the granites and metasediments of the Damara Belt, (ii) two subvertical conductors in upper to mid-crustal levels which correlate with major tectonic zone boundaries and (iii) a highly conductive middle to lower crust in the southern part of the profile. The geometry of the conductive structures could reflect a regional shear system in which upper crustal listric faults pass into a detachment zone in the middle crust. We interpret the high electrical conductivity in terms of graphite (or other forms of mineralization) enrichment along the shear planes. This zone of crustal weakness may have originated in Pre-Damara times and had probably experienced several episodes of crustal reactivation before the intrusion of basaltic dike swarms during the Cretaceous rifting and magmatism associated with the opening of the South Atlantic.  相似文献   

17.
Takeshi  Tsuji  Yasuyuki  Nakamura  Hidekazu  Tokuyama  Millard F.  Coffin  Keita  Koda 《Island Arc》2007,16(3):361-373
Abstract   To show the structure of oceanic crust and Moho around the eastern Ogasawara Plateau, we have analyzed industry-standard two-dimensional multichannel seismic reflection data. To obtain improved velocity models, phase information of seismic signals was used for velocity analysis and velocity models for oceanic crust above Moho were determined. We apply this velocity analysis technique to seismic reflection data around the eastern Ogasawara Plateau, with the result of clear images of structures within oceanic crust and Moho. South of the Ogasawara Plateau, Moho deepens proximal to the Plateau. Moho distal to the Plateau is ca 7 km below sea floor (bsf), whereas it is ca 10 km bsf near the Plateau. The characters of oceanic crust and Moho differ significantly north and south of the Plateau. To the north, the structure of oceanic crust is ambiguous, the sea floor is shallower and less smooth, and Moho is discontinuous. To the south, structures within oceanic crust and Moho are imaged clearly, and the sea floor is deeper. A strong Moho reflection south of the Plateau might represent a sharp boundary between layered gabbro and peridotite. However, discontinuous Moho reflections north of the Plateau might represent rough topography because of intensive magmatism or a gradual downward increase in velocity within a thick Moho transition zone. A fracture zone north of the Plateau also appears to separate oceanic crust and Moho of different characters, suggesting vigorous magmatism between the Plateau and the fracture zone, and that the Ogasawara Plateau and the fracture zone influenced the genesis of oceanic crust and upper mantle. Differences in acoustic characteristics to the north and south of the Plateau are apparent in profiles illuminated by seismic attributes.  相似文献   

18.
While ocean circulation is driven by the formation of deep water in the North Atlantic and the Circum-Antarctic, the role of southern-sourced deep water formation in climate change is poorly understood. Here we address the balance of northern- and southern-sourced waters in the South Atlantic through the last glacial period using neodymium isotope ratios of authigenic ferromanganese oxides in thirteen deep sea cores from throughout the South Atlantic. The data indicate that northern-sourced water did not reach the Southern Ocean during the late glacial, and was replaced by southern-derived intermediate and deep waters. The high-resolution neodymium isotope record (~ 300 yr sample spacing) from two spliced deep Cape Basin sites indicates that over the last glacial period northern-sourced water mass export to the Southern Ocean was stronger during the major Greenland millennial warming intervals (and Southern Hemisphere cool periods), and particularly during the major interstadials 8, 12, and 14. Northern-sourced water mass export was weaker during Greenland stadials and reached minima during Heinrich Events. The benthic foraminiferal carbon isotopes in the same Cape Basin core reflect a partial control by Southern Hemisphere climate changes and indicate that deep water formation and ventilation occurred in the Southern Ocean during major Greenland cooling intervals (stadials). Together, neodymium isotopes and benthic carbon isotopes provide new information about water mass sourcing and circulation in deep Southern Ocean waters during rapid glacial climate changes. Combining carbon and neodymium isotopes can be used to monitor the relative proportion of northern- and southern-sourced waters in the Cape Basin to gain insight into the processes which control the carbon isotopic composition of deep waters. In this study we show that deep water formation and circulation was more important than biological productivity and nutrient regeneration changes for controlling the carbon isotope chemistry of Antarctic Bottom Water during millennial-scale glacial climate cycles. This observation also lends support to the hypothesis that ocean circulation is linked to interhemispheric climate changes on short timescales, and that ventilation in the glacial ocean rapidly switched between the northern and Southern Hemisphere on millennial timescales.  相似文献   

19.
本文介绍了国家气候中心发展的一个全球海洋碳循环环流模式,并分析评估了该模式的基本性能.该模式是在美国地球物理流体动力学实验室(GFDL,Geophysical Fluid Dynamics Laboratory)的全球海洋环流模式MOM4(Modular Ocean Model Version 4)基础上发展的一个垂直方向40层、包含生物地球化学过程的全球三维海洋碳循环环流模式,简称为MOM4_L40(Modular Ocean Model Version 4 With 40Levels).该模式在气候场强迫下长期积分1000年,结果分析表明,与观测相比,模式较好地模拟了海洋温度、盐度、总二氧化碳、总碱、总磷酸盐的表面和垂直分布特征.模拟的海洋总二氧化碳分布与观测基本相符,表层为低值区,其下为高值区,高值区域位于10°S—60°N之间,但2000m以上模拟值较观测偏小,2000m以下模拟值较观测偏大.总体来说,MOM4_L40模式是一个可信赖的海洋碳循环过程模拟研究工具.  相似文献   

20.
The Kane fracture zone has been traced as a distinct topographic trough from the Mid-Atlantic Ridge near 24°N to the 80-m.y. B.P. isochron (magnetic anomaly 34) on either side of the ridge axis for a total of approximately 2800 km. Major changes in trend of the fracture zone occur at approximately 72 m.y. B.P. (anomaly 31 time) and approximately 53–63 m.y. B.P. (anomaly 21–25 time) which are the result of major reorientations in spreading directions in the central Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号