首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evaluation of seabed response under wave loading is important for prediction of stability of foundations of offshore structures. In this study, a stochastic finite element model which integrates the Karhunen-Loève expansion random field simulation and finite element modeling of wave-induced seabed response is established. The wave-induced oscillatory response in a spatially random heterogeneous porous seabed considering cross-correlated multiple soil properties is investigated. The effects of multiple spatial random soil properties, correlation length and the trend function (the relation of the mean value versus depth) on oscillatory pore water pressure and momentary liquefaction are discussed. The stochastic analyses show that the uncertainty bounds of oscillatory pore water pressure are wider for the case with multiple spatially random soil properties compared with those with the single random soil property. The mean pore water pressure of the stochastic analysis is greater than the one obtained by the deterministic analysis. Therefore, the average momentary liquefaction zone in the stochastic analysis is shallower than the deterministic one. The median of momentary liquefaction depth generally decreases with the increase of vertical correlation length. When the slope of the trend function increases, the uncertainty of pore water pressure is greatly reduced at deeper depth of the seabed. Without considering the trend of soil properties, the wave-induced momentary liquefaction potential may be underestimated.  相似文献   

2.
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-lineafity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.  相似文献   

3.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

4.
波浪作用下粉质土海床的液化是影响海上平台、海底管线等海洋构筑物安全的灾害之一。在进行构筑物设计中应考虑海床液化的深度问题,而液化土体对下部海床的界面波压力是计算海床孔隙水压力增长以及液化深度的重要参量。本文基于波致粉土海床自上而下的渐进液化模式,利用双层流体波动理论,推导了考虑海床土体黏性的海床界面波压力表达式,并与不考虑黏性时的界面波压力进行了比较分析。结果表明,计算液化后土体界面波压力时,是否考虑液化土体的黏性对结果影响较大,进而可能影响粉质土海床液化深度的确定。  相似文献   

5.
《Ocean Engineering》2004,31(5-6):561-585
The evaluation of the wave-induced seabed instability in the vicinity of a breakwater is particularly important for coastal and geotechnical engineers involved in the design of coastal structures. In this paper, an analytical solution for three-dimensional short-crested wave-induced seabed instability in a Coulomb-damping porous seabed is derived. The partial wave reflection and self-weight of breakwater are also considered in the new solution. Based on the analytical solution, we examine (1) the wave-induced soil response at different location; (2) the maximum liquefaction and shear failure depth in coarse and fine sand; (3) the effects of reflection coefficients; and (4) the added stresses due to the self-weight of the breakwater.  相似文献   

6.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

7.
To simulate the wave-induced response of coupled pore fluids and a solid skeleton in shallow water, a set of solutions with different formulations (fully dynamic, partly dynamic, and quasi-static) corresponding to each soil behavior assumption is presented. To deal with Jacobian elliptic functions involved in the cnoidal theory, a Fourier series approximation is adopted for expanding the boundary conditions on the seabed surface. The parametric study indicates the significant effect of nonlinearity for shallow water wave, which also enhances the effect of soil characteristics. The investigation of the applicability of reduced formulations reveals the necessity of a partly or even fully dynamic formulation for the wave-induced seabed response problem in shallow water, especially for thickened seabed. The analysis of liquefaction in the seabed indicates that the maximum depth of liquefaction is shallower, and the width of liquefaction is broader under cnoidal wave loading. The present analytical model can provide more reasonable result for the wave-induced seabed response in the range of shallow water wave.  相似文献   

8.
Models based on the theoretical framework of soil mechanics are presented to evaluate storm wave-induced silty seabed instability and geo-hazards through a case study in the Yellow River delta. First, the transient and residual mechanisms of wave-induced pore pressure are analyzed. Three typical models (i.e., elastic model, pore pressure development mode and elasto-plastic model) are proposed to calculate wave-induced stresses in the seabed. Next, mechanisms and calculation methods of wave-induced seabed instability modes such as scour, liquefaction, seepage instability and shear slide are proposed. Typical results of storm wave-induced excess pore pressure and seabed instability are given and relevant discussions are made. At last, the formation mechanism of geo-hazards in the Yellow River delta is analyzed based on the proposed mechanism and calculated results. Results and analysis indicate that both transient and residual mechanisms are important to storm wave-induced response of silty seabed and hence the elasto-plastic model is more appropriate. Complete liquefaction does not happen, while other types of instability occur mostly within 2–6 m under the seabed surface. Wave-induced scour, seepage instability and shear slide are all possible instability modes under the 1-year storm waves, and scour is predominant for the 50-year storm waves. The formation mechanism of geo-hazards such as shallow slide and storm wave reactivation, pockmarks, silt flow and gully, disturbed stratum and hard crust in the Yellow River are well explained based on the proposed mechanisms and calculated results of storm wave-induced silty seabed instability.  相似文献   

9.
Berms deployed at the toe of conventional rubble mound breakwaters can be very effective in improving the stability of the armor layer. Indeed, their design is commonly tackled by paying attention to armor elements dimensioning. Past research studies showed how submerged berms can increase the stability of the armor layer if compared to straight sloped conventional breakwaters without a berm. To fill the gap of knowledge related to the interaction between breakwaters with submerged berm, waves and soil, this research aims to evaluate how submerged berms configuration influences the seabed soil response and momentary liquefaction occurrences around and beneath breakwaters foundation, under dynamic wave loading. The effects of submerged berms on the incident waves transformation have been evaluated by means of a phase resolving numerical model for simulating non-hydrostatic, free-surface, rotational flows. The soil response to wave-induced seabed pressures has been evaluated by using an ad-hoc anisotropic poro-elastic soil solver. Once the evaluation of the seabed consolidation state due to the presence of the breakwater has been performed, the dynamic interaction among water waves, soil and structure has been analyzed by using a one-way coupling boundary condition. A parametric study has been carried out by varying the berm configuration (i.e. its height and its length), keeping constant the offshore regular wave condition, the berm and armor layer porosity values, the water depth and the elastic properties of the soil. Results indicate that the presence of submerged berms tends to mitigate the liquefaction probability if compared to straight sloped conventional breakwater without a berm. In addition, it appears that the momentary liquefaction phenomena are more influenced by changing the berm length rather than the berm height.  相似文献   

10.
波浪引起的海床不稳定性是海洋工程中需要考虑的重要问题。在对现有波致海床滑动稳定性计算方法进行分析的基础上,提出了一种波致海床滑动稳定性计算的全应力状态法,将其与现有计算方法进行了对比分析,并进一步研究了波致砂土海床和软土海床的滑动失稳特征。结果分析表明,全应力状态法在波致海床滑动稳定性分析中具有较好的适用性。对于砂土海床,其滑动稳定性受饱和度的影响较大,且当海床计算厚度约为0.2倍波长时对应的滑动深度最大。波浪作用下坡度不超过2°的均质软土海床,其最危险滑动面的位置仅与波长有关,其滑动深度约为0.21倍波长,滑动面半弦长约为0.33倍波长;海床表面的波压力数值只影响其安全系数的大小,而不影响其滑动深度。  相似文献   

11.
In this study, a set of generalized analytical solutions are developed for the wave-induced response of a saturated porous seabed under plane strain condition. When considering the water waves originating in deep water and travelling towards the shore, their velocities, lengths and heights vary. Depending on the characteristics of the wave and the properties of the seabed, different formulations (fully dynamic, partly dynamic, quasi-static) for the wave-induced response of the seabed are possible. The solutions for the response with these formulations are established in terms of non-dimensional parameters. The results are presented in terms of pore pressure, shear stress and vertical effective stress distributions within the seabed. For typical values of wave period and seabed permeability, the regions of applicability of the three formulations are identified and plotted in parametric spaces. With given wave and seabed characteristics, these regions provide quick identification of the appropriate formulation for an adequate evaluation of the wave-induced seabed response.  相似文献   

12.
Seabed instability caused by soil liquefaction due to build-up of excess pore pressure within the sedimentary seabed represents a serious threat to coastal structures. Models of varying sophistication exist for predicting the liquefaction process but most previous calculations are limited to regular waves while the real waves are random. In this study, a numerical study of liquefaction potential of a sand bed under narrow-band random waves is carried out employing ensemble modelling techniques. The aim of the work is to investigate the effect of random waves on excess pore pressure build-up and liquefaction processes and study the probability distribution of the maximum liquefaction depth. The computational results using a 1D liquefaction model indicate that the random wave-induced liquefaction can be much deeper than that of the corresponding regular waves with the largest individual waves in the random wave time series playing a dominant role in determining the maximum liquefaction depth. It is also found that the time for the maximum liquefaction depth to be reached can vary considerably from one random wave series to another, which suggests that in random waves notable densification may occur within the same timeframe as that for liquefaction.  相似文献   

13.
In this study, unlike most previous investigations for wave-induced soil response, a simple semi-analytical model for the random wave-induced soil response is established for an unsaturated seabed of finite thickness. Two different wave spectra, the B-M and JONSWAP spectra, are considered in the new model. The influence of random wave loading on the soil response is investigated by comparing with the corresponding representative regular wave results through a parametric study, which includes the effect of the degree of saturation, soil permeability, wave height, wave period and seabed thickness. The maximum liquefaction depth under the random waves is also examined. The difference on the soil response under the two random wave types, B-M and JONSWAP frequency spectra, is also discussed in the present work.  相似文献   

14.
In the last few decades, considerable efforts have been devoted to the phenomenon of wave-induced liquefactions, because it is one of the most important factors for analysing the seabed and designing marine structures. Although numerous studies of wave-induced liquefaction have been carried out, comparatively little is known about the impact of liquefaction on marine structures. Furthermore, most previous researches have focused on complicated mathematical theories and some laboratory work. In the present study, a data dependent approach for the prediction of the wave-induced liquefaction depth in a porous seabed is proposed, based on a multi-artificial neural network (MANN) method. Numerical results indicate that the MANN model can provide an accurate prediction of the wave-induced maximum liquefaction depth with 10% of the original database. This study demonstrates the capacity of the proposed MANN model and provides coastal engineers with another effective tool to analyse the stability of the marine sediment.  相似文献   

15.
Wave-induced seabed instability in front of a breakwater   总被引:2,自引:0,他引:2  
D.S. Jeng 《Ocean Engineering》1997,24(10):887-917
The wave-induced soil response in a porous seabed has become an important factor for the stability of offshore facilities, because many marine structures may have failed due to seabed instability and concomitant subsidence. An analytical solution is presented for the wave-induced soil response under the action of a three-dimensional wave system. Based on this general solution, the mechanism of seabed instability is then investigated. The general solutions for pore pressure and effective stresses are readily reducible to two dimensions for progressive waves, and are compared to theoretical and experimental work available. Some dominant factors affecting the wave-induced seabed instability are discussed; including permeability, seabed thickness and degree of saturation.  相似文献   

16.
One of the important design considerations for marine structures situated on sand deposits is the potential for instability caused by the development of excess pore pressure as a result of wave loading. A build-up of excess pore pressure may lead to initial liquefaction. The current practice of liquefaction analysis in marine deposits neglects the effects of structures over seabed deposits. However, analyses both in terrestrial and marine deposits have shown that the presence of a structure, depending on the nature of the structure and initial soil conditions, may decrease or increase the liquefaction potential of underlying deposits. In the present study, a wave-induced liquefaction analysis is carried out using mechanisms similar to earthquake-induced liquefaction. The liquefaction potential is first evaluated using wave-induced liquefaction analysis methods for a free field. Then by applying a structure force on the underlying sand deposits, the effect of the structure on the liquefaction potential is evaluated. Results showed that depending on the initial density of the sand deposits and different structures, water depths and wave characteristics, the presence of a structure may increase or decrease the liquefaction potential of the underlying sand deposits.  相似文献   

17.
波浪作用下单桩基础周围海床液化机制研究   总被引:1,自引:1,他引:0  
建立波浪作用下单桩周围三维海床动力响应模型,考虑自重影响下的海床长时间固结过程。采用已有物理模型试验数据对模型进行验证,证实其具有较好的适用性。模拟波浪作用下单桩周围三维海床液化区域,通过定量分析超孔隙水压力和土体初始有效应力的变化,讨论单桩插入深度对海床液化的影响机制。研究表明,单桩插入深度发生变化时,土体初始有效应力对海床液化的影响要大于超孔隙水压力,且影响程度随着插入深度的增加而逐渐增大。  相似文献   

18.
In this study, a mathematical integrated model is developed to investigate the wave-induced sloping seabed response in the vicinity of breakwater. In the present model, the wave model is based on the Volume-Averaged/Reynolds Averaged Navier–Stokes (VARANS) equations, while Biot's consolidation equation is used to govern the soil model. The influence of turbulence fluctuations on the mean flow with respect to the complicated interaction between wave, sloping seabed and breakwater are obtained by solving the Volume-Averaged k  ϵ model. Unlike previous investigations, the phase-resolved absolute shear stress is used as the source of accumulation of residual pore pressure, which can link the oscillatory and residual mechanisms simultaneously. Based on the proposed model, parametric studies regarding the effects of wave and soil characteristics as well as bed slopes on the wave-induced soil response in the vicinity of breakwater are investigated. Numerical results indicate that wave-induced seabed instability is more likely to occur in a steep slope in the case of soil with low relative density and low permeability under large wave loadings. It is also found that, the permeability of breakwater significantly affect the potential for liquefaction, especially in the region below the breakwater.  相似文献   

19.
A mine burial field experiment was carried out on two sandy seafloors between January and April 2004 in the Bay of Brest, France. Burial recording mines (BRMs) were used to measure burial and mine orientation at 15-min intervals. Sonar and bottom photographs were also used to characterize sediment morphology and mine burial. These observations are compared with the predictions of mine burial using the following three models: a momentary liquefaction model, a current-induced scour model, and a wave-induced scour model. Analysis combines mine burial data, sediment data, seabed observations, and hydrodynamic measurements. At the first site, ldquoRascas,rdquo the seabed dynamics are dominated by tides and river runoff. Almost no mine burial was measured during the experiment which is in agreement with predictions of mine burial models (current-induced scour and liquefaction). Dynamics at the second site, ldquoBertheaume,rdquo are driven by tides and ocean waves. A long storm (one week) and several swell events were experienced and significant mine burial was observed in conjunction with high significant waveheights. Mine burial models suggest that burial at ldquoBertheaumerdquo was dominated by wave-induced scour rather than current-induced scour or momentary liquefaction.  相似文献   

20.
作为一种常见的近海海底灾害地质现象,波致海床液化严重威胁着黄河三角洲地区海底工程设施的安全。粉质海床液化后,海底粉土的结构、物理和力学性质均发生了改变,研究该变化规律尤其是评估液化后海底粉土再次发生液化的可能性具有重要的理论意义和应用价值。本文利用室内动三轴仪对取自黄河三角洲已液化和未液化海底粉土开展了液化试验对比研究,讨论了已液化和未液化海底粉土在孔压增长模式和轴向动应变发展趋势方面的异同,对比分析了二者的液化势。研究结果表明:应变标准比孔压标准更适用于评估黄河三角洲地区海底粉土的液化势;孔压和动应变发展模式均表明与未液化粉土相比,已液化海底粉土再次发生液化的抗力有所提高;已液化和未液化海底粉土归一化孔压比ud3与循环加载次数比N/Nf间相关关系可采用双曲线或指数函数模型进行定量化描述;未液化海底粉土的波致液化临界循环应力比约为0.20,已液化海底粉土的临界循环应力比约为0.35。研究成果有助于加深对海底粉土波致液化特性的认识,亦可为循环应力历史影响下的土体力学性质研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号