首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
ABSTRACT

For the development of sustainable, efficient risk management strategies for the hydrological extremes of droughts and floods, it is essential to understand the temporal changes of impacts, and their respective causes and interactions. In particular, little is known about changes in vulnerability and their influence on drought and flood impacts. We present a fictitious dialogue between two experts, one in droughts and the other in floods, showing that the main obstacles to scientific advancement in this area are both a lack of data and a lack of commonly accepted approaches. The drought and flood experts “discuss” available data and methods and we suggest a complementary approach. This approach consists of collecting a large number of single or multiple paired-event case studies from catchments around the world, undertaking detailed analyses of changes in impacts and drivers, and carrying out a comparative analysis. The advantages of this approach are that it allows detailed context- and location-specific assessments based on the paired-event analyses, and reveals general, transferable conclusions based on the comparative analysis of various case studies. Additionally, it is quite flexible in terms of data and can accommodate differences between floods and droughts.  相似文献   

2.
长江流域历史水旱灾害分析   总被引:2,自引:1,他引:1  
黄忠恕  李春龙 《湖泊科学》2003,15(Z1):210-215
长江流域有丰富和长期的水旱灾害史料,最早的水灾和旱灾记载有2000余年的历史,经过系统整理和分析的历史水旱灾害资料有1000余年的旱涝型年表和500余年的旱涝分布图集.在以上资料基础上,对长江流域历史水旱灾害的地域分布特性和时间变化规律进行了初步分析:500余年历史水旱灾害的地域分布显示,流域水旱灾害总体特征是水灾重于旱灾,各级水旱灾害频率的地域分布极不均匀,存在着显著的灾害多发和少发地带,它们与自然地理环境、水系特征、气候条件和社会经济条件等因素有关;1000余年旱涝型年表分析表明,长江流域洪涝和干旱频次在时间上的非均匀分布并非完全随机,表现出多种时间尺度的年际变化特征,其中主要表现为约100a上下的大干湿气候期变化及40a左右的小旱涝期振动.  相似文献   

3.
Extreme events can cause species substitution or biodiversity losses. In floodplains, flood and drought phases are considered disturbances when their amplitude or intensity are atypical. These unpredictable events can affect the structure of aquatic communities. In this context, we evaluated the response of the zooplankton community to two extreme droughts that occurred from 2001−2002 and 2014−2016. We assessed species richness and composition on three occasions: before extreme drought (phase 1); during the phase after extreme drought (phase 2) characterized by floods, and lastly, after flood (phase 3), when the fluctuations in water levels in the lowlands stabilized. We hypothesized that (i) zooplankton composition in the lake is distinct in the phases before extreme drought and flood, as the extreme drought event causes changes in the community structure and (ii) after the flood (phase 3), the composition of species in the lake would be more similar to the phase 1, with a large number of species shared in these. Contrary to what we expected, similarity in the species composition of the lake was greater between the phase 1 and phase 2, which may indicate the resilience capacity of the community, through specialized adaptations capable of tolerating extreme. The lowest similarity was observed between the phase 1 and phase 3 and this difference may be a consequence of the dilution effect of the community in the flood (phase 2). Our results suggest that the community structure in the lake can be considered more resilient to extreme drought. We also highlight the importance of the hydrological dynamics of a floodplain for the structure of communities, considering atypical droughts in periods of different climatic events.  相似文献   

4.
鄱阳湖流域过去1000 a径流模拟以及对气候变化响应研究   总被引:1,自引:1,他引:0  
张小琳  李云良  于革  张奇 《湖泊科学》2016,28(4):887-898
为研究过去千年尺度径流变化及其对气候变化的响应,以长江中游鄱阳湖流域为研究区,运用气候模式CCSM4和ECHAM5模拟过去1000 a气候数据,空间降尺度后驱动水文模型模拟了鄱阳湖流域过去近千年流域径流序列.利用快速傅里叶变换、小波分析等手段,分析流域极端径流变化特征、周期和该流域旱涝事件发生频率.结果表明:2种气候模式均能反映出中世纪暖期及小冰期阶段的干湿交替变化,且小冰期内中干旱状态维持时间较长;径流的丰枯变化与降水量变化具有较好的对应关系.CCSM4和ECHAM5模式下发生旱涝灾害与极大极小降水事件发生频率基本相同,径流丰枯变化与降水变化周期相近,均具有30 a左右的主周期,10~15、7 a左右的子周期.小波系数模平方图中30 a左右显著的能量信号揭示了该周期与北太平洋气候的主要环流机制的太平洋年代际振荡周期相近,因此,大气环流涛动是造成气候-水文变化的主要原因.研究结果拓展了基于近代60 a观测记录的流域水文变化的认识,探讨了千年时间长度下流域干湿变化特征和水文对气候响应的动力机制,有助于全面系统认识长江中游在全球气候暖化背景下旱涝极端水文事件的发生机制与变化规律.  相似文献   

5.
ABSTRACT

In many places, magnitudes and frequencies of floods are expected to increase due to climate change. To understand these changes better, trend analyses of historical data are helpful. However, traditional trend analyses do not address issues related to shifts in the relative contributions of rainfall versus snowmelt floods, or in the frequency of a particular flood type. We present a novel approach for quantifying such trends in time series of floods using a fuzzy decision tree for event classification and applied it to maximal annual and seasonal floods in 27 alpine catchments for the period 1980–2014. Trends in flood types were studied with Sen’s slope and double mass curves. Our results reveal a decreasing number of rain-on-snow and an increasing number of short rainfall events in all catchments, with flash floods increasing in smaller catchments. Overall, the results demonstrate the value of incorporating a fuzzy flood-type classification into flood trend analyses.  相似文献   

6.
长江流域汛期降水集中程度和洪涝关系研究   总被引:61,自引:0,他引:61       下载免费PDF全文
用新定义的降水集中度和集中期分别讨论了我国长江流域不同地段汛期降水在时间和空间上的分布特征和变化规律. 结果表明在对长江流域旱涝灾害研究方面,降水集中度和集中期能够定量地表征降水量在时空场上的非均匀性,提取出最大降水重心对应的时段,因此可以比较理想地分析旱涝灾害发生的基本特征及其形成机制. 并且在长江中下游地区的降水集中度与东亚副热带季风之间存在着比较密切的联系.  相似文献   

7.
《水文科学杂志》2013,58(6):1121-1136
Abstract

One of the most significant anticipated consequences of global climate change is the change in frequency of hydrological extremes. Predictions of climate change impacts on the regime of hydrological extremes have traditionally been conducted by a top-down approach that involves a high degree of uncertainty associated with the temporal and spatial characteristics of general circulation model (GCM) outputs and the choice of downscaling technique. This study uses the inverse approach to model hydrological risk and vulnerability to changing climate conditions in the Seyhan River basin, Turkey. With close collaboration with the end users, the approach first identifies critical hydrological exposures that may lead to local failures in the Seyhan River basin. The Hydro-BEAM hydrological model is used to inversely transform the main hydrological exposures, such as floods and droughts, into corresponding meteorological conditions. The frequency of critical meteorological conditions is investigated under present and future climate scenarios by means of a weather generator based on the improved K-nearest neighbour algorithm. The weather generator, linked with the output of GCMs in the last step of the proposed methodology, allows for the creation of an ensemble of scenarios and easy updating when improved GCM outputs become available. Two main conclusions were drawn from the application of the inverse approach to the Seyhan River basin. First, floods of 100-, 200- and 300-year return periods under present conditions will have 102-, 293- and 1370-year return periods under the future conditions; that is, critical flood events will occur much less frequently under the changing climate conditions. Second, the drought return period will change from 5.3 years under present conditions to 2.0 years under the future conditions; that is, critical drought events will occur much more frequently under the changing climate conditions.  相似文献   

8.
Wei Qi 《水文科学杂志》2019,64(16):2015-2024
ABSTRACT

The impacts of changes in forest coverage on extreme floods have drawn much attention globally. This study quantifies the sensitivity of flood peaks to forest coverage and roughness changes. With this objective, a framework is first introduced that includes a variance-based sensitivity analysis approach and a water and energy budget-based distributed hydrological model with a vegetation module. The influence of forest coverage changes is simulated by altering land-use types that are based on physical parameters. A variance decomposition approach is used to quantify the contribution of influential factors, i.e. event size, forest coverage and roughness changes, to extreme flood peak variations. The results in a medium-sized river basin show forest coverage changes have little influence: variations in canopy interception, ground surface water retention, soil moisture and groundwater table resulting from changing forest coverage did not alter flood peaks considerably. In contrast, it is found that flood peaks are more sensitive to roughness variations.  相似文献   

9.
根据1953—1983年降水资料,分析了柘林水库修河流域降水时空分布特征和旱涝规律。降水主要集中在6月中、下旬,有时可推迟到7月中旬,此时暴雨频数高,强度大,历时长,是柘林水库洪水运行管理的关键时期。为此,需要了解梅雨晚期发生的大暴雨的形成条件和时空分布,以及梅雨期旱涝情况和采用预报的风险程度。本文在这方面进行了一些综合性分析,特别是对5,6月旱涝年份的统计规律、环流特征作了较详细的气候学对比研究。  相似文献   

10.
中国异常增暖来年江淮流域易发生大洪水   总被引:1,自引:0,他引:1       下载免费PDF全文
在1987年以来全球气温明显增高的同时,中国气温也显著增高,1997年达到了峰值,2006年又出现了次峰值.为搞清异常增暖对中国旱涝等灾害的发生可能带来的影响,本文重点统计分析了中国年平均气温对全球年平均气温的响应关系,并分析研究了1951~2006年期间中国月年平均气温的年际变化特征和汛期主要多雨带类型及发生严重洪涝区域之间的对应关系.结果发现:(1)3个中国年平均气温异常偏高但8月气温不高的来年汛期主要多雨带和严重洪涝区域都发生在淮河流域(3/3);(2)5个年平均气温偏高且8月气温也明显偏高的来年汛期长江流域发生了大洪水和严重洪涝(5/5),特别是其中2个8月气温特高的来年(1954、1998年)汛期长江流域发生了特大洪水和严重洪涝(2/2).对这个前兆强信号的发现和揭示,不但证明了全球和中国异常增暖对来年中国汛期水旱灾害的重大影响,也对准确预测中国汛期主要多雨带分布类型和江淮流域的大洪水和特大洪水有特别重要的应用价值.  相似文献   

11.
ABSTRACT

The southern coast of the Caspian Sea in northern Iran is bordered by a mountain range with forested catchments which are susceptible to droughts and floods. This paper examines possible changes to runoff patterns from one of these catchments in response to climate change scenarios. The HEC-HMS rainfall–runoff model was used with downscaled future rainfall and temperature data from 13 global circulation models, and meteorological and hydrometrical data from the Casilian (or “Kassilian”) Catchment. Annual and seasonal predictions of runoff change for three future emissions scenarios were obtained, which suggest significantly higher spring rainfall with increased risk of flooding and significantly lower summer rainfall leading to a higher probability of drought. Flash floods arising from extreme rainfall may become more frequent, occurring at any time of year. These findings indicate a need for strategic planning of water resource management and mitigation measures for increasing flood hazards.
EDITOR M.C. Acreman ASSOCIATE EDITOR not assigned  相似文献   

12.
Climate extremes, in particular droughts, are significant driving forces towards riverine ecosystem disturbance. Drought impacts on stream ecosystems include losses that can be either direct (e.g., destruction of habitat for aquatic species) or indirect (e.g., deterioration of water quality, soil quality, and increased chance of wildfires). This paper combines hydrologic drought and water quality changes during droughts and represents a multistage framework to detect and characterize hydrological droughts while considering water quality parameters. This method is applied to 52 streamflow stations in the state of California, USA, over the study period of 1950–2010. The framework is assessed and validated based on two drought events declared by the state in 2002 and 2008. Results show that there are two opposite drought propagation patterns in northern and southern California. In general, northern California indicates more frequent droughts with shorter time to recover. Chronology of drought shows that stations located in southern California have not followed a specific pattern but they experienced longer drought episodes with prolonged drought recovery. When considering water quality, results show that droughts either deteriorate or enhance water systems, depending on the parameter of interest. Undesirable changes (e.g., increased temperature and decreased dissolved oxygen) are observed during droughts. In contrast, decreased turbidity is detected in rivers during drought episodes, which is desirable in water systems. Nevertheless, water quality deteriorates during drought recovery, even after drought termination. Depending on climatic and streamflow characteristics of the watersheds, it was found that it would take nearly 2 months on average for water quality to recover after drought termination.  相似文献   

13.
The run‐off volume altered by the construction of hydropower plants affects ecohydrological processes in catchments. Although the impacts of large hydropower plants have been well documented in the literature, few studies have been conducted on the impacts of small cascaded hydropower plants (SCHPs). To evaluate the impacts of SCHPs on river flow, we chose a representative basin affected by hydropower projects and, to a lesser degree, by other human activities, that is, the Qiuxiang River basin in Southern China. The observed river discharge and climate data during the period of 1958–2016 were investigated. The datasets were divided into a low‐impact period and a high‐impact period based on the number of SCHPs and the capacities of the reservoirs. The daily river discharge alteration was assessed by applying the Indicators of Hydrologic Alteration. To separate the impact of the SCHPs on the local river discharge from that of climate‐related precipitation, the back‐propagation neural network was used to simulate the monthly average river discharge process. An abnormal result was found: Unlike large reservoirs in large watersheds, the SCHPs regulated the flows during the flood season but were not able to mitigate the droughts during the dry season due to their limited storage and the commonly occurring inappropriate interregulations of the SCHPs. The SCHPs also reduced the annual average river discharge in the research basin. The contribution of the SCHPs to the river discharge changes was 85.37%, much higher than the contributions of climate change (13.43%) and other human activities (1.20%). The results demonstrated that the impacts of the SCHPs were different from those of large dams and reservoirs that regulate floods and relieve droughts. It is necessary to raise the awareness of the impacts of these river barriers.  相似文献   

14.
15.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   

16.
Local dry/wet conditions and extreme rainfall events are of great concern in regional water resource and disaster risk management. Extensive studies have been carried out to investigate the change of dry/wet conditions and the adaptive responses to extreme rainfall events within the context of climate change. However, applicable tools and their usefulness are still not sufficiently studied, and in Hunan Province, a major grain-producing area in China that has been frequently hit by flood and drought, relevant research is even more limited. This paper investigates the spatiotemporal variation of dry/wet conditions and their annual/seasonal trends in Hunan with the standardized precipitation index (SPI) at various time scales. Furthermore, to verify the potential usefulness of SPI for drought/flood monitoring, the correlation between river discharge and SPI at multiple time scales was examined, and the relation between extreme SPI and the occurrence of historical drought/flood events is explored. The results indicate that the upper reaches of the major rivers in Hunan Province have experienced more dry years than the middle and lower reaches over the past 57 years, and the region shows a trend of becoming drier in the spring and autumn seasons and wetter in the summer and winter seasons. We also found a strong correlation between river discharge and SPI series, with the maximum correlation coefficient occurred at the time scale of 2 months. SPI at different time scales may vary in its usefulness in drought/flood monitoring, and this highlights the need for a comprehensive consideration of various time scales when SPI is employed to monitor droughts and floods.  相似文献   

17.
In this study, the climate teleconnections with meteorological droughts are analysed and used to develop ensemble drought prediction models using a support vector machine (SVM)–copula approach over Western Rajasthan (India). The meteorological droughts are identified using the Standardized Precipitation Index (SPI). In the analysis of large‐scale climate forcing represented by climate indices such as El Niño Southern Oscillation, Indian Ocean Dipole Mode and Atlantic Multidecadal Oscillation on regional droughts, it is found that regional droughts exhibits interannual as well as interdecadal variability. On the basis of potential teleconnections between regional droughts and climate indices, SPI‐based drought forecasting models are developed with up to 3 months' lead time. As traditional statistical forecast models are unable to capture nonlinearity and nonstationarity associated with drought forecasts, a machine learning technique, namely, support vector regression (SVR), is adopted to forecast the drought index, and the copula method is used to model the joint distribution of observed and predicted drought index. The copula‐based conditional distribution of an observed drought index conditioned on predicted drought index is utilized to simulate ensembles of drought forecasts. Two variants of drought forecast models are developed, namely a single model for all the periods in a year and separate models for each of the four seasons in a year. The performance of developed models is validated for predicting drought time series for 10 years' data. Improvement in ensemble prediction of drought indices is observed for combined seasonal model over the single model without seasonal partitions. The results show that the proposed SVM–copula approach improves the drought prediction capability and provides estimation of uncertainty associated with drought predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Droughts and floods are two opposite but related hydrological events. They both lie at the extremes of rainfall intensity when the period of that intensity is measured over long intervals. This paper presents a new concept based on stochastic calculus to assess the risk of both droughts and floods. An extended definition of rainfall intensity is applied to point rainfall to simultaneously deal with high intensity storms and dry spells. The mean-reverting Ornstein–Uhlenbeck process, which is a stochastic differential equation model, simulates the behavior of point rainfall evolving not over time, but instead with cumulative rainfall depth. Coefficients of the polynomial functions that approximate the model parameters are identified from observed raingauge data using the least squares method. The probability that neither drought nor flood occurs until the cumulative rainfall depth reaches a given value requires solving a Dirichlet problem for the backward Kolmogorov equation associated with the stochastic differential equation. A numerical model is developed to compute that probability, using the finite element method with an effective upwind discretization scheme. Applicability of the model is demonstrated at three raingauge sites located in Ghana, where rainfed subsistence farming is the dominant practice in a variety of tropical climates.  相似文献   

19.
Scenario‐neutral assessments of climate change impact on floods analyse the sensitivity of a catchment to a range of changes in selected meteorological variables such as temperature and precipitation. The key challenges of the approach are the choice of the meteorological variables and statistics thereof and how to generate time series representing altered climatologies of the selected variables. Different methods have been proposed to achieve this, and it remains unclear if and to which extent they result in comparable flood change projections. Here, we compare projections of annual maximum floods (AMFs) derived from three different scenario‐neutral methods for a prealpine study catchment. The methods chosen use different types of meteorological data, namely, observations, regional climate model output, and weather generator data. The different time series account for projected changes in the seasonality of temperature and precipitation, in the occurrence statistics of precipitation, and of daily precipitation extremes. Resulting change in mean AMF peak magnitudes and volumes differs in sign between the methods (range of ?6% to +7% for flood peak magnitudes and ?11% to +14% for flood volumes). Moreover, variability of projected peak magnitudes and flood volumes depends on method with one approach leading to a generally larger spread. The differences between the methods vary depending on whether peak magnitudes or flood volumes are considered and different relationships between peak magnitude and volume change result. These findings can be linked to differing flood regime changes among the three approaches. The study highlights that considering selected aspects of climate change only when performing scenario‐neutral studies may lead to differing representations of flood generating processes by the approaches and thus different quantifications of flood change. As each method comes with its own strengths and weaknesses, it is recommended to combine several scenario‐neutral approaches to obtain more robust results.  相似文献   

20.
Although many large-N quantitative studies have evidenced the adverse effects of climatic extremes on social stability in China during the historical period, most of them rely on temperature and precipitation as major explanatory variables, while the influence of floods and droughts on social crises is rarely measured. Furthermore, a comparison of the climate-society nexus among different geographic regions and at different temporal scales is missing in those studies. To address this knowledge gap,this study examines quantitatively the influence of floods and droughts on internal wars in three agro-ecological(rice, wheat,and pastoral) regions in China in AD1470–1911. Poisson regression and wavelet transform coherence analyses are applied to allow for the non-linear and non-stationary nature of the climate-war nexus. Results show that floods and droughts are significant in driving internal wars in historical China, but are characterized by strong regional variation. In the rice region, floods trigger internal wars at the inter-annual and multi-decadal time scales. In the wheat region, both floods and droughts cause internal wars at the inter-annual and multi-decadal time scales. In the pastoral region, internal wars are associated with floods only at the multi-decadal time scale. In addition, the multi-decadal coherence between hydro-climatic extremes and internal wars in all three of the agro-ecological regions is only significant in periods in which population density is increasing or the upper limit of regional carrying capacity is being reached. The above results imply that the climate-war nexus is mediated by regional geographic factors such as physical environmental setting and population pressure. Hence, we encourage researchers who study the historical human-climate relationship to boil down data according to geographic regions in the course of statistical analysis and to examine each region individually in follow-up studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号