首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several episodes of kimberlite magmatism occurred in the East European Province (EEP) during a long (about 1.5 Gyr) time period, from the Late Paleoproterozoic (ca. 1.8 Ga) in the Archean Ukrainian and Baltic shields to the Middle Paleozoic (ca. 0.36 Ga) mainly in the Arkhangelsk, Timan, and adjacent regions. Based on the analysis of data on 16 kimberlite occurrences and four lamproite occurrences within the EEP, five time stages can be distinguished; one of them, the Middle Paleozoic stage (Middle Ordovician and Devonian), is the most productive epoch for diamond in the northern hemisphere (EEP, Siberian Craton, and part of the China Craton). The analysis of petrological and geochemical characteristics of kimberlites (lamproites were studied less thoroughly) revealed variations in rock composition and their correlation with a number of factors, including the spatial confinement to the northern or southern Archean blocks of the craton, time of formation of the source of kimberlite melts, contents of volatiles and autoliths, etc. Three petrogeochemical types of kimberlites were distinguished: high-, medium-, and low-Ti (TiO2 > 3 wt %, 1–3 wt %, and <1 wt %, respectively). There are two time intervals of the formation of kimberlite and lamproite sources in the EEP, corresponding to TNd(DM) values of about 2 Ga (up to 2.9 Ga in the Por’ya Guba occurrence) and 1 Ga. The latter interval includes two groups of occurrences with model source ages of about 1 Ga (low-and medium-Ti kimberlites of the Zolotitsa and Verkhotina occurrences) and about 0.8 Ga (high-Ti kimberlites of the Kepino and a number of other occurrences); i.e., there seems to be an evolutionary trend in the composition of kimberlites. Concentric zoning patterns were recognized. The role of the crust in kimberlite sources is discussed; it is assumed that buried remnants of the oceanic lithosphere (megaliths) may underlie whole continents. A unique feature of the composition of low-Ti kimberlites, for instance, kimberlites of the Zolotitsa occurrence (to a smaller extent, medium-Ti kimberlites of the V. Grib pipe) is the distinct depletion of highly charged elements and pronounced negative anomalies of Ti, Zr, Th, U, Nb, and Ta in trace-element distribution patterns, which indicates a contribution of crustal material to the source of these kimberlites. It was shown that autoliths exert a significant influence on the differentiation of kimberlite material, resulting in the enrichment of rocks in the whole spectrum of incompatible elements. It was argued that geochemical criteria can be used together with traditional criteria (including those based on indicator minerals) for the assessment of diamond potential in EEP occurrences. We hope that such a combined approach will yield important outcomes in the future.  相似文献   

2.
David R. Nelson 《Lithos》1989,22(4):265-274
Kimberlites which intruded the Sisimiut (formerly Holsteinsborg) region of central west Greenland during the Early Palaeozoic have initial 87Sr/86Sr between 0.7028 and 0.7033 and εNd between + 1.3 and + 3.9. Mid-Proterozoic potassic lamproites from the same region have initial 87Sr/86Sr between 0.7045 and 0.7060, εNd between −13 and −10 and unradiogenic initial Pb isotopic compositions. The isotopic data favour an asthenospheric mantle source for the kimberlite magmas, in common with “basaltic” kimberlites from other localities, whereas the lamproite magma sources evolved in isolation from the convecting mantle for > 1000 Ma, probably within the subcontinental lithospheric mantle of the Greenland craton, prior to emplacement of the lamproites.  相似文献   

3.
Liquidus experimental studies on kimberlite, lamproite and lamprophyre compositions are reviewed with respect to the information they carry on the mantle origin of these rock types. This information is coupled with melting experiments on peridotite in the presence of H2O and mixed H2O+CO2 volatile species. The origin of most lamproites is explained by the melting of mica-harzburgite assemblages at depths ranging from 40km for leucite lamproites to more than 150km for olivine lamproites. Clinopyroxene-rich, silica-poor lamproites remain enigmatic, but are possibly derived by the melting of a mica-bearing ultramafic source richer in clinopyroxene and under more oxidized, CO2-bearing conditions. There are insufficient experimental studies on kimberlite to reasonably constrain their origin, and what remain are only general indications of the compositions of partial melts of mantle under volatile-bearing conditions. Melt compositions are not sufficiently well known to prevent very conceptual use of melt ‘names’ such as ‘kimberlitic’ or ‘carbonatitic’, and melts similar to alkaline and ultramafic lamprophyre may be hidden under this shroud. Clearer definition of the origins of alkaline melt compositions such as kimberlites and various lamprophyre types badly needs more exact bracketing of melt compositions of a variety of possible mantle mineral assemblages. The recently-developed sandwich reversal technique is ideally suited to study small degrees of partial melting, and could usefully be applied to lherzolitic and non-lherzolitic materials with hydrous and/or carbonate minerals.  相似文献   

4.
Kimberlites, carbonatites and ultramafic, mafic and potassic lamprophyres have been produced in West Greenland in recurrent events since the Archaean. Five distinct age groups are recognised: Archaean (>2500 Ma). Early Proterozoic (1700–1900 Ma), Middle Proterozoic (Gardar, c. 1100–1300 Ma), Late Proterozoic (600 Ma) and Mesozoic-Tertiary (200-30 Ma) The rocks comprise two large and four small carbonatite occurrences, four kimberlite dyke swarms, one lamproite dyke swarm and one lamproite pipe, one dyke swarm of potassic lamprophyre (shonkinite) and some ten dyke swarms of ultramafic lamprophyre and monchiquite. Geochemical data for the various rock groups are presented. Some of the carbonatites may represent relatively unmodified mantle-derived melts. The kimberlites range from primitive to differentiated compositions, and there are regional differences between kimberlites within Archaean and Proterozoic basement. The ultrapotassic lamproites and shonkinites have strong negative Nb spikes in their trace element spectra. The ultramafic and monchiquitic lamprophyres encompass a large compositional variation; however, several of the dyke swarms have individual chemical characters.

The rocks are very unevenly distributed in West Greenland, indicating a lithospheric control, probably by old weakness zones providing access to the surface. The kimberlites are considered to be mainly of asthenospheric derivation. The regional differences are interpreted in terms of melting with phlogopite as a residual phase, with smaller degrees of melting at deeper levels beneath the Archaean lithosphere than beneath the Proterozoic. The ultrapotassic lamproites and shonkinites occur almost exclusively within a continental collision zone with possible two-way subduction and they are interpreted as mainly of lithospheric derivation, with a contribution from a subducted slab. Data for the other rock types are equivocal.

Except for the Archaean rocks, the age groups can be related to major geotectonic events. The Early Proterozoic group is related to continental collision at 1850 Ma and subsequent rifting; the Middle Proterozoic group is related to continental rifting (Gardar) and the Mesozoic group is likewise related to continental rifting prior to continental break-up in the Tertiary. The 600 Ma kimberlites and carbonatite are envisaged as cratonic, extra-rift activity in relation to continental break-up and formation of the Iapetus ocean further south, perhaps with a common cause in a broad, impinging mantle plume.  相似文献   


5.
The petrological and geochemical characteristics of kimberlites from two Russian provinces of the northern East European craton (EEP) and the Siberian craton (SC) (especially the Yakutian diamondiferous province, YDP), and aphanitic kimberlites from the Jericho pipe (Canada) were compared for the elucidation of some aspects of the genesis of these rocks. The comparison of the EEP and YDP showed that they comprise identical rock associations with some variations in kimberlite composition between particular fields and regions, which are clearly manifested in the TiO2-K2O, TiO2-(Y, Zr, HREE), SiO2-MgO, SiO2-Al2O3, MgO-Ni, MgO-CO2, and MgO-H2O diagrams and in variations in light element ratios (Li/Yb, Be/Nd, and B/Nb). The compositions of YDP kimberlites are confined mainly to quadrant III; i.e., their source was mainly the depleted mantle, whereas the compositions of EEP kimberlites fall within all four quadrants in the fields of both enriched and slightly depleted mantle reservoirs. The initial (143Nd/144Nd) i ratio of kimberlites from the Yakutian collection is 0.5121–0.5126. The lead isotopic characteristics of the EEP and YDP kimberlites are similar to mantle values: 206Pb/204Pb of 16.19–19.14, 207Pb/204Pb of 15.44–15.61, and 208Pb/204Pb of 34.99–38.55. In the 207Pb/204Pb-206Pb/204Pb diagram, part of the kimberlites, including those from the Botuobiya pipe, fall within the lower part of the field of group I kimberlites from southern Africa near the Pb isotopic composition of the depleted mantle. It was shown that the chemical compositions of the aphanitic kimberlites of the Jericho pipe (supposedly approaching the composition of primary magmas) are similar to those of some individual kimberlite samples from the YDP and EEP. It was supposed that the initial kimberlite melt arrived from the asthenosphere and was enriched in water and other volatile components (especially CO2). During its ascent to the surface, the melt assimilated mantle components, primarily MgO; as a result, it acquired the compositional characteristics observed in kimberlites. Subsequent compositional modifications were related to diverse factors, including the type of mantle metasomatism, degree of melting, etc. We emphasized the importance of petrological and geochemical criteria (low contents of HREE and Ti in the rocks and a kimberlite source similar to BSE or EMI) for the estimation of the diamond potential of rocks.  相似文献   

6.
依据中国大陆三维速度扰动图象,编制了中国大陆现代岩石圈和华北—扬子地台古岩石圈厚度图,并对含与不含金刚石的金伯利岩及钾镁煌斑岩中部分指示矿物和上地幔捕虏体地质特征进行分析,发现岩石圈底部某些地球物理特征与金刚石赋存部位有密切关系。在此基础上,从深部角度讨论了含金刚石的金伯利岩及钾镁煌斑岩时空分布特征,并作了预测研究。  相似文献   

7.
Kimberlites with different diamond grades from the Zolotitsa, Verkhotina, and Kepina occurrences of the Zimny Bereg field (Arkangel’sk oblast) have been compared in order to ascertain geochemical criteria of their diamond resource potential. A new collection of 21 core samples taken within a depth interval of 207–940 m from nine boreholes drilled in the central and western portions of the high-grade diamond-bearing Grib kimberlite pipe was subjected to comprehensive petrographic and geochemical examination, including Sr, Nd, and Pb isotopes and trace elements determined with ICP-MS. The compositional variations in kimberlites are controlled by the structural types of rocks. Porphyritic kimberlite (PK) distinctly differs from autolithic kimberlite breccia (AKB). Autoliths (Av) and PK are enriched in Th, U, Nb, Ta, La, Ce, Pr, P, Nd, Sm, Eu, Ti, LREE, and MREE, whereas HREE contents are rather uniform in all types of kimberlites. No lateral zoning was observed in pipes pertaining to the same structural type. The composition of kimberlites in the Zimny Bereg field and their diamond resource potential are variable. In the series of the Zolotitsa, Verkhotina, and Kepina occurrences, the Ti content increases, the La/Yb ratio grows from 18–44 to 70–130, and the diamond grade diminishes in the Kepina occurrence. The variations in kimberlite compositions are considered in terms of the degree of partial melting in the mantle, the role of volatiles, etc. As follows from the variation in the Ce/Y ratio, kimberlites from the Zolotitsa occurrence were formed at a lower degree of partial melting in comparison with the Kepina occurrence. Products of different degrees of partial melting are recognized within the Grib pipe; Av were likely formed at a somewhat higher degree of melting than AKB. An appreciable isotopic heterogeneity of the mantle is recorded in variable Nd and Sr isotopic compositions of kimberlites. The Kepina kimberlites were derived from a source slightly depleted relative to CHUR (?Nd(t) reaches +4) and are close to kimberlites of group I in South Africa. Kimberlites from the Grib pipe with transitional Nd isotopic composition plotted near the Bulk Silicate Earth (BSE) value in the ?Nd(t)-?Sr(t) diagram adjoin the first group. The source of kimberlites of the Zolotitsa occurrence falls in the field of enriched mantle and is considered to be a product of interaction of an asthenospheric plume with the ancient enriched lithospheric mantle. Kimberlites depleted in Ti, Zr, and Th are related to a source formed as a result of a multistage process that included mantle metasomatism with participation of fluids. Devonian kimberlites derived from sources that involve crustal material (a shift of 206Pb/204Pb, minimums of Th, U, Nb, and Ta contents) are diamond-bearing both in the East European Platform (the Zolotitsa and Verkhotina occurrences) and in the Siberian Craton (the Nakyn field).  相似文献   

8.
Numerous lamproite dykes are hosted by the Eastern Dharwar Craton, southern India, particularly towards the northwestern margin of the Cuddapah Basin. We present here a comprehensive mineralogical and geochemical (including Sr and Nd isotopic) study on the lamproites from the Vattikod Field, exposed in the vicinity of the well-studied Ramadugu lamproite field. The Vattikod lamproites trend WNW–ESE to NW–SE and reveal effects of low-temperature post-magmatic alteration. The studied lamproites show porphyritic texture with carbonated and serpentinized olivine, diopside, fluorine-rich phlogopite, amphibole, apatite, chromite, allanite, and calcite. The trace-element geochemistry (elevated Sr and HFSE) reveals their mixed affinity to orogenic as well as anorogenic lamproites. Higher fluorine content of the hydrous phases coupled with higher whole-rock K2O highlights the role of metasomatic phlogopite and apatite in the mantle source regions. Trace-element ratios such as Zr/Hf and Ti/Eu reveal carbonate metasomatism of mantle previously enriched by ancient subduction processes. The initial 87Sr/86Sr-isotopic ratios (calculated for an assumed emplacement age of 1350 Ma) vary from 0.7037 to 0.7087 and ?Nd range from ??10.6 to ??9.3, consistent with data on global lamproites and ultrapotassic rocks. We attribute the mixed orogenic–anorogenic character for the lamproites under study to multi-stage metasomatism. We relate the (1) earlier subduction-related enrichment to the Paleoproterozoic amalgamation of the Columbia supercontinent and the (2) second episode of carbonate metasomatism to the Mesoproterozoic rift-related asthenospheric upwelling associated with the Columbia breakup. This study highlights the association of lamproites with supercontinent amalgamation and fragmentation in the Earth history.  相似文献   

9.
This paper discusses diamonds and their accessory minerals from the Koidu kimberlites, placers on the Bafit River in Sierra Leone, and Chikapa placers in the Democratic Republic of Congo. Minerals from the placers are characterized by fine preservation and bear no evidence of long-term transportation. In placers, garnet, ilmenite and zircon have been found, but the specific features of their chemical composition do not coincide with those of minerals from kimberlites. Diamonds from the placers are of a mantle origin, but they have no direct analogs in the known kimberlite and lamproite pipes.  相似文献   

10.

The Miocene lamproites of the West Kimberley region, Western Australia include olivine-leucite lamproites (≤10 wt% MgO) containing olivine and leucite microphenocrysts, and diamondiferous olivine lamproites (20–30 wt% MgO) containing olivine phenocrysts and larger (1–10 mm) olivine as mantle xenocrysts and dunite micro-xenoliths. Olivine phenocrysts and thin (<100 μm) magmatic rims define trends of decreasing Cr and Ni, and increasing Ca and Mn, with decreasing olivine Mg#, consistent with fractional crystallisation of olivine (and minor chromite). Many phenocrysts are zoned, and those with cores of similar Mg# and trace element abundances to the mantle xenocrysts may be xenocrysts overgrown by later olivine crystallised from the lamproite magma. Magmatic olivines Mg#91–92 are estimated to have been in equilibrium with olivine lamproite magma(s) containing ~22–24 wt% MgO. The xenocrystic mantle olivines Mg90–92.5 in the olivine lamproites are inferred from trace element abundances to be mostly derived from garnet peridotite with equilibration temperatures estimated from the Al-in-olivine thermometer (Bussweiler et al. 2017) to be ~1000–1270 °C at depths of 115–190 km. Olivines from the deeper lithosphere are less depleted (lower Mg#, higher Na, Al, P, Ti, Zr etc) than those at shallower depths, a feature suggested to reflect the combined effects of metasomatic re-enrichment of the craton roots (Ti, Fe, Zr etc) and increasing temperature with depth of origin (Na, Al, Ca). The West Kimberley lamproite olivines are not enriched in Li, as might be expected if their source regions contained continental sedimentary material as has been previously inferred from lamproite large-ion-lithophile trace elements, and Sr and Pb isotopes.

  相似文献   

11.
金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNd(t)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。  相似文献   

12.
Proterozoic mafic potassic and ultrapotassic igneous rocks emplacedin the Cuddapah Basin and Dharwar Craton of the southern Indianshield are among the earliest recorded on Earth. Lamproitesintrude the basin and its NE margin, whereas kimberlites intrudethe craton to the west of the basin. Kimberlites occur in twospatially separate groups: the non-diamondiferous Mahbubnagarcluster that was emplaced at 1400 Ma and is of a similar ageto the Cuddapah lamproites, and the predominantly diamondiferousAnantapur cluster, emplaced at  相似文献   

13.
Summary ?Orangeite occurring as a complex series of dikes at Swartruggens (South Africa), is host to a diversity of accessory minerals, the most common of which are apatite, barite and calcite. Less common, but important phases are perovskite, wadeite, an unidentified Ca–Ti–Fe-silicate, strontianite, unidentified Ca-REE phosphate, zircon, rutile, titaniferous magnetite, quartz and diverse sulphides. The accessory minerals show wide variations in their mode in different segments of the dike suite as a consequence of crystal sorting during flow differentiation. Compositional data are given for apatite, barite, calcite, perovskite, wadeite and the unidentified Ca–Ti–Fe-silicate. The accessory mineral suite is similar to that found in lamproites but is sufficiently distinct in composition and paragenesis to preclude inclusion with that clan. Differences include the common presence of groundmass calcite, barite and serpentine in the orangeite and the absence of typomorphic minerals (leucite, sanidine, richterite) of the lamproite clan. Received January 15, 2001; revised version accepted October 15, 2001  相似文献   

14.
In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area – Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos – this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the ‘Transbrasiliano Lineament’. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.  相似文献   

15.
We have obtained major and trace element data for a suite of rocks emplaced over an area of 45,000 km2 in the Eastern Goldfields Province (EGP), Yilgarn Craton, that are petrographically and mineralogically described as kimberlites, melnoites and carbonatites. Kimberlites dominate the rock types found in the west whereas carbonatites and melnoites are common in the east. Compatible element data from the carbonatites and melnoites tend to lie along trends that imply silicate–carbonate fractionation. The kimberlites exhibit a much greater amount of compatible element scatter as a result of the variable contribution from continental lithospheric mantle (CLM). When compared to southern African kimberlites, the EGP kimberlites have consistently lower MgO and Os concentrations at comparable Ni concentrations. The opposite is true for Ti–Ni variation where the EGP kimberlites have higher Ti than the southern African kimberlites at comparable Ni concentrations. These data are interpreted to suggest that the CLM beneath the province was either melt metasomatised some time prior to kimberlite emplacement, or that the EGP CLM is less refractory (melt depleted) than the Kaaapvaal CLM.

In contrast, the incompatible element ratios and initial Nd values are constant throughout the entire rock suite. Carbonate C and O isotope data show a broad positive correlation, consistent with magmatic-hydrothermal trends found in many carbonatite complexes. These incompatible element and isotope data link all of the rocks within the province to the same mantle source that was similar to modern-day mantle plume sources.

Re–Os data for the various samples, including oxide minerals from all of the petrographic types, xenocryst-poor kimberlites and melnoites yield a precise Re–Os isochron of 2025±10 Ma and an initial γOs of 5.3±3.1 (MSWD=5.8). These data support the conclusion based on incompatible element, stable isotope and Sm–Nd isotope data that the rocks are comagmatic.

Initial Os isotopic compositions and Re/Os ratios for the xenocryst-rich kimberlites are also correlated. However, the correlation does not pass through the calculated initial γOs and Re/Os of the isochron. The Re–Os data show that the incompatible element-enriched melt exhibited very little control on the Re–Os variations of the xenocryst-rich kimberlites.

Correlations between deep mantle seismic velocities, petrology and whole-rock compatible element geochemistry suggest that the rheology and history of the EGP CLM played a significant role in determining the petrographic characteristics of the magmas that were ultimately emplaced into the EGP crust.  相似文献   


16.
A comparative analysis of within-plate (intracontinental) and orogenic magmatic series formed during various evolution stages of the East European Craton (EEC) was performed using geological-petrological, geochemical, and isotopic data. The example of Baltic shield indicates that the compositions and tectonic settings of mantle melts in the Early Precambrian (Archean and Early Paleoproterozoic) significantly differed from those in the Phanerozoic. The Early Precambrian magmas were dominated by high-Mg low-Ti melts of the komatiite-basaltic and boninite-like series; this tectonomagmatic activity was determined by the ascent of mantle superplumes of the first generation, which originated in the depleted mantle. In the interval of 2.3–2.0 Ga, high-Mg mantle melts gradually gave place to the Fe-Ti picrites and basalts that are typical of within-plate Phanerozoic magmatism; at ~2 Ga, plume tectonics of the Early Precambrian gave way to plate tectonics. This is considered to be linked to the activity of mantle superplumes of the second generation (thermochemical), which originated from the liquid metallic core/mantle interface. Owing to the presence of fluid components, these superplumes reached much higher levels, where spreading of their head portions led to the active interaction with overlaying thinned rigid lithosphere. Sm-Nd isotopic studies showed that orogenic Neoarchean and Middle Paleoproterozoic magmatism of the Baltic shield was connected to the melting of the lithospheric mantle and crust; the melting of crustal sources gave rise to felsic members of the considered complexes. The systematic geochemical variations observed in these rocks with time presumably reflect a general trend toward an increase of the thickness of the continental crust serving as the basement for orogens. Beginning at ~2 Ga, the Meso, Neoproterozoic, and Phanerozoic including, no systematic variations were observed in the isotopic-geochemical characteristics of within-plate magmatism. All considered age sections demonstrate that isotopic-geochemical characteristics of parental mantle melts were strongly modified by crustal contamination. Mesoproterozoic magmatism of EEC was unique in the development of giant anorthosite-rapakivi granite complexes. Kimberlites and lamproites were repeatedly formed within EEC in the time interval from 1.8 to 0.36 Ga; their maximal development was noted in the Late Devonian. It was shown that only kimberlites derived from weakly enriched mantle are diamondiferous in the Arkhangelsk province; in the classic diamond provinces (Africa and Yakutia), diamondiferous kimberlites were derived from both depleted and enriched mantle.  相似文献   

17.
The problem of heterogeneity of the mantle lithosphere of the southwestern portion of the Siberian Platform has been considered, and the diamond content in potential mother lodes within this area has been estimated based on original geochemical data on the rare-element composition of pyropes from diamondiferous lamproites of the Ingashin field within the Prisayan region and ancient dispersion haloes of minerals accompanying diamonds in the area between the Angara and Uda rivers. Pyropes from lamproites are characterized by low concentrations of Zr (0.18–9.05 ppm), Hf (0.03–0.37 ppm), and rare earth elements (Sm 0.04–0.49, Eu 0.02–0.16, and Dy 0.05–0.96 ppm). Pyropes from the Lower Carboniferous Baeron Formation within the Tangui-Chuksha area are significantly different from pyropes of the Ingashin lamproites in high contents of Zr (30.36–139.23 ppm) and Hf (0.4–2.22 ppm). These pyropes are characterized by elevated concentrations of rare earth elements (Sm 1.34–3.68, Eu 0.53–1.17, and Dy 1.0–2.05 ppm). The distribution patterns of rare incompatible elements in pyropes of the Lower Carboniferous Mura massif within the Mura area manifest even stronger differences with pyropes of the Ingashin lamproites and in many respects with pyropes from Lower Carboniferous sediments of the Baeron Formation within the Tangui-Chuksha area. The results obtained indicate that there is no large-scale regional spreading of pyropes from Mid-Riphean lamproite bodies in the course of washout of these bodies and that the mantle lithosphere in the southwestern portion of the Siberian Platform is laterally heterogeneous in mineralogical-geochemical terms. The chemical composition and the peculiar distribution pattern of rare elements in pyropes from lamproites of the Prisayan region indicate a depleted, primarily lherzolite composition of the upper mantle that was transformed through low-temperature potassium metasomatosis. In terms of the chemical and rare-element compositions, pyropes from Lower Carboniferous sediments of the Tangui-Chuksha and Mura areas belong to a wider range of mantle rocks: depleted peridotites, metasomatic peridotites under low (900–1000°C) and high (>1000°C) temperature conditions, and megacrysts. This suggests that the composition of the lithospheric mantle in this area of the southern portion of the Siberian Platform is characterized by a considerably differentiated stratification of mantle rocks, some of which were credibly formed in the diamond stability field.  相似文献   

18.
Several spindle-shaped grains of zircon, which have a small size (<0.25 mm) and a distinct purplish pink coloration were found in the crushed samples of kimberlites from the Aykhal, Komsomolskaya-Magnitnaya, Botuobinskaya (Siberian platform), and Nyurbinskaya (Yakutia) pipes and olivine lamproites of the Khani massif (West Aldan). U-Pb SHRIMP II zircon dating performed at the VSEGEI Center for Isotopic Research yielded the ages of 1870–1890 Ma for the pipes of the Western province (Aykhal and Komsomolskaya) and 2200–2750 Ma for the pipes of the eastern province (Nyurbinskaya and Botuobinskaya), which allowed us to consider these zircons to be xenogenic to kimberlites. Although these zircons resemble in their age and color those from the granulite xenoliths in the Udachnaya pipe [2], no other granulite minerals are found there. Thus, major geological events in the mantle and lower crust, which led to the formation of zircon-bearing rocks, happened at 1800–1900 Ma in the northern part of the kimberlite province, whereas in the Eastern part of the province (Nakyn field) these events were much older (2220–2700 Ma). It is known that the period of 1800–1900 Ma in the Earth’s history was accompanied by intense tectonic movements and widespread alkaline-carbonatite magmatism. This magmatism was related to plume activity responsible for overheating the large portions of the mantle to the temperatures at which some diamonds in mantle rocks would burn (northern part of the kimberlite province). In the Nakyn area, the mantle underwent few or no geological processes at that time, and perhaps for this reason this area hosts more diamondiferous kimberlites. The age of olivine lamproites from the Khani massif is 2672–2732 Ma. Thus, these are some of the world’s oldest known K-alkaline rocks.  相似文献   

19.
We report a rare accessory groundmass mineral of K-rich titanate, having a composition close to that of potassium triskaidecatitanate (K2Ti13O27), from an underground drill-core sample of ultrapotassic rock from southwestern part of the Jharia coal field in the Damodar valley, at the northern margin of the Singhbhum craton, Eastern India. Potassium triskaidecatitanate is regarded as a typomorphic mineral of orangeites (Group II kimberlites) of Kaapvaal craton, southern Africa, and its occurrence in the Jharia ultrapotassic rock is significant since ultrapotassic suite of rocks elsewhere from the Damodar valley have been recently suggested to be peralkaline lamproites based on mineral-genetic classification. The important role played by a unique geodynamic setting (involving a thinned metasomatised lithospheric mantle and inheritance of an Archaean subduction component) at the northern margin of the Singhbhum craton in deciding the petrological diversity of the early Cretaceous ultrapotassic intrusives from the Damodar valley is highlighted in this study.  相似文献   

20.
Early Proterozoic kimberlites of Karelia are among the most ancient diamond-bearing primary source rocks in the world. They compose the large (2.0 × 0.8 km) Kimozero body localized in the predicted Zaonezhskoe kimberlite field. The established and assumed occurrences of kimberlite magmatism are located within the Karelian craton, which was stabilized during the Early Archean. They are confined to the central part of a large geophysical anomaly detected by gravity, magnetic, seismic, and heat-flow studies and mark a deep-seated magma chamber. Kimberlite bodies occur within structural blocks bounded by zones of plicative-rupture dislocations.The Kimozero kimberlites form an extensive but thin saucer-like body cut by narrow quasi-cylindrical feeders and dikes. It consists of metamorphosed kimberlites, their breccias and tuffs with widely varying amounts of mica. The body includes fragmentary fine-layered crater formations. The rocks contain olivine and phlogopite phenocrysts in an extremely altered groundmass of serpentine, chlorite, calcite, mica, and ore minerals as well as indicator minerals of kimberlites, such as Cr-spinel, manganiferous ilmenite, Cr-diopside, and rare pyrope. About 100 diamonds were extracted from 12 samples (total weight 815 kg). The crystals are colorless resorbed octahedra and, more seldom, combined octahedra-dodecahedra and spinel twins with abundant green spots caused by natural irradiation, which often make the whole crystal surface green. The diamonds contain inclusions of Mg-rich orthopyroxene and pentlandite suggestive of peridotitic lithospheric mantle derivation and dating of the sulfide inclusion implies a late Archean mantle source. By petrochemistry, the rocks are classified as kimberlites.The Kimozero kimberlites differ from classical Phanerozoic ones in having higher Fe contents, low contents of alkalies and P2O5, and intense superimposed carbonate, magnetite, and amphibole mineralization. The saucer-like bodies with narrow feeders without developed diatremes have no analogs in Russia but are similar to the saucer-like kimberlite bodies in Canada (Fort a la Corne), India (Tokapal), and Central Africa (Bakwanga) and the West Kimberley lamproites in Australia. By analogy with these bodies and on the basis of some common petrographic features (presence of pyroclastics and specific amoeba-like autoliths, scarcity of fragments of the enclosing rocks, local reworking of the deposited matter), the Kimozero kimberlites are considered to be the products of subaerial volcanic central-type eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号