首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
Dew and rain water collection in the Dalmatian Coast, Croatia   总被引:1,自引:0,他引:1  
Passive dew harvesting and rainwater collection requires a very small financial investment but can exploit a free, clean (outside urban/industrial zones) and inexhaustible source of water. This study investigates the relative contributions of dew and rain water in the Mediterranean Dalmatian coast and islands of Croatia, with emphasis on the dry summer season. In addition, we evaluate the utility of transforming abandoned roof rain collectors (“impluviums”) to collect dew water too. Two sites were chosen, an exposed open site on the coast favourable to dew formation (Zadar) and a less favourable site in a cirque of mountains in Komiža (Vis Island). Between July 1, 2003 and October 31, 2006, dew was collected two or three times per day on a 1 m2 inclined (30°) test dew condenser, together with standard meteorological data (air temperature and relative humidity, cloud cover, windspeed and direction). Maximum yields were 0.41 mm in Zadar and 0.6 mm in Komiža. The mean yearly cumulative dew yields were found to be 20 mm (Zadar) and 9.3 mm (Komiža). Because of its physical setting, Komiža represents a poor location for dew collection. However, during the dry season (May to October), monthly cumulative dew water yield can represent up to 38% of water collected by rainfall. In both July 2003 and 2006, dew water represented about 120% of the monthly cumulative rain water. Refurbishing the abandoned impluviums to permit dew collection could then provide useful supplementary water, especially during the dry season. As an example, the 1300 m2 impluvium at Podšpilje near Komiža could provide, in addition to rain water, 14,000 L dew water per year.  相似文献   

2.
The formation of dew, deposition of frost and accumulation of snow mainly on the upper domes of a non-ventilated net radiometer seriously affect the measurement of available energy (net radiation). Net radiometers measure radiation, and energy balances and are widely used for estimation of evapotranspiration throughout the world. To study the effects of dew, frost, and snow on a non-ventilated net radiometer, a radiation station was set up which uses 2 CM21 Kipp & Zonen pyranometers (one inverted), 2 CG1 Kipp & Zonen pyrgeometers (one inverted), along with a Q7.1 net radiometer (Radiation & Energy Balance Systems, Inc.; REBS) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using 4 CV2 Kipp & Zonen ventilation systems. The net radiometer was not ventilated. The ventilation of pyranometers and pyrgeometers prevents dew and frost deposition and snow accumulation which otherwise would disturb measurements. All sensors were installed at about 3.0 m above the ground, which was covered with natural vegetation during the growing season (May–September). The incoming and outgoing solar or shortwave radiation, the incoming (atmospheric) and outgoing (terrestrial) longwave radiation, and the net radiation have been continuously measured by pyranometers, pyrgeometers and a net radiometer, respectively, since 1995. These parameters have been measured every 2 s and averaged into 20 min. To evaluate the effects of dew, frost, and snow, three days were chosen: 26 April 2004 with early morning dew, 6 January 2005 with an early morning frost, and the snowy day of 24 February 2005. Dew formation, frost deposition, and snow accumulation occurred mainly on the upper dome of the non-ventilated Q7.1 net radiometer on the related days, while the ventilated Kipp & Zonen system was free of dew, frost and snow. Net radiation measured by the non-ventilated net radiometer Rn,unvent. during dew and frost periods of the above-mentioned days was greater than ventilated ones Rn,vent. (− 0.2 MJ m− 2 vs. − 0.8 MJ m− 2 during almost 4 h on 26 April 2004, and − 0.2 MJ m− 2 vs. − 0.7 MJ m− 2 during almost 6.5 h on 6 January 2005). The reason for higher reading by the non-ventilated net radiometer during dew and frost periods was due to emission of additional longwave radiation from water and ice crystals formed mainly on the upper dome of the Q7.1 net radiometer. In contrast, during the snowy day of 24 February 2005, the Rn,unvent. was less than Rn,vent. (− 4.00 MJ m− 2 vs. 0.77 MJ m− 2, mainly from sunrise to sunset). The extremely low Rn,unvent. measured by the non-ventilated net radiometer on 24 February 2005 is due to blocking of the incoming solar radiation (mainly diffuse radiation) by the snow-covered upper dome.  相似文献   

3.
A traditional mulching technique used in Lanzarote, Canary Islands, allows dry farming as well as pronounced water savings in irrigation. It is known to reduce evaporational losses, but is also supposed to enhance the nocturnal condensation of water vapour from the atmosphere. The mulch layer consists of porous volcanic rock fragments abundantly available on the island. The mulched surface is believed to cool rapidly and to be more hygroscopic than a bare soil surface. This was investigated during a field experiment conducted over 68 nights during different seasons in 2001 and 2002, as well as some simple laboratory measurements. It was found that nocturnal condensation on the mulch surface (max 0.33 mm) was lower than on the bare soil surface (max 0.57 mm) or any one of three alternative mulch substrates. However, a slightly stronger nocturnal cooling of the mulched as compared to the bare surface was present. It is shown that these contrary findings can be explained by the higher hygroscopicity of the dry loam soil, resulting in condensation gains beyond the strict definition of dew. Differences in plant-availability of non-hygroscopic dew water and hygroscopic water uptakes are discussed, and conditions under which mulching would show positive condensation effects are defined. This includes a theoretical section demonstrating that non-hygroscopic mulch layers of a proper thickness can provide small amounts of dew to plant roots at the mulch–soil interface. This condensation could also happen during the day and would be favoured by a high amplitude of the diurnal atmospheric moisture cycle.  相似文献   

4.
《Atmospheric Research》2005,73(1-2):1-22
We compare the characteristics of dew at nearly the same latitude (42–45°N) for the Mediterranean island of Corsica (Ajaccio, France) and two continental locations (Bordeaux, France, Atlantic coastal area; Grenoble, France, alpine valley). Dew amount was measured on a horizontal reference plate made of polymethylmethacrylate (PMMA) and placed at 1 m above the ground. Data are correlated with plate and air temperature, air relative humidity, wind speed and cloud cover during the period from 14-08-1999 to 15-01-2003.General features as well as particularities of the sampling sites are discussed. The average daily dew yield is higher for the island station at Ajaccio (0.070 mm) than the Bordeaux coastal area (0.046 mm) or the Grenoble valley (0.036 mm). However, the accumulated dew yield was highest for the coastal station (9.8 mm/year) as compared to the island (8.4 mm/year), and much larger than in the alpine valley (4 mm/year). The difference between cumulated and average dew yield stems from the greater number of dew days in the coastal area (58%) versus 33% for the island and 30% in the valley. The higher wind speeds at the island station (average wind during dew is 2 m/s) and lower relative humidity explain the smaller number of dew days. The dew rate seasonal variation is negligible in Bordeaux and exhibits during summer a maximum in Ajaccio and a minimum in Grenoble.A computer model that includes simple meteorological data (air temperature and relative humidity, wind speed, cloud cover) is used to determine the thermal balance and fit to dew mass evolution. Two parameters that account for heat and mass exchange can be adjusted. It was found that, within the uncertainties, these two numbers are the same for the two continental sites, thus allowing dew formation on plates to be evaluated from only simple meteorological measurements. Somewhat larger values are found for the island, due to limitations in the model, which are discussed.  相似文献   

5.
Simultaneous sampling of chlorinated hydrocarbons (CHs) and monocyclic aromatic hydrocarbons (MAHs), potentially harmful to humans and/or responsible for the formation of ozone and secondary particles, in dew water and in the ambient air was carried out from August 2004 to July 2005 in Hino City, situated in the western part of Greater Tokyo, Japan. CHs were less contained in dew water than MAHs. Toluene (volume-weighted mean concentration, VWM: 4.77 nM) and m,p-Xylenes (VWM: 5.07 nM) except dichloromethane, which was abnormally high (VWM: 1.14 μM), were abundant among eleven VOCs determined in dew water. Chloroform, carbon tetrachloride, 1,2-dichloroethane, and benzene were not detected in dew water during the study period. Dew water contained higher amounts of VOCs than would have been expected from the ambient gas-phase concentrations and the temperature-corrected Henry's law constants. Following the determination method of humic substances in river water proposed by Hiraide et al. [Hiraide, M., Shima, T., Kawaguchi, H., 1994. Separation and determination of dissolved and particulate humic substances in river water. Mikrochim. Acta 113, 269–276], the VWM of soluble humic and fulvic acid fractions in dew water was found to be 1.00 mg/L and 0.87 mg/L (n = 20), respectively, while the VWM of particulate humic and fulvic acid fractions was found to be 0.61 mg/L and 0.42 mg/L (n = 20), respectively. Surface tension decreased with an increase in dissolved fulvic acid fraction in dew water, indicating that humic-like substances with relatively lower molecular weight, which is soluble in acid solution, could be an effective surface-active species within dew water. The enrichment factors, which were defined as the ratio of the observed VOCs concentration to the estimated, were over 102 for MAHs except for benzene and increased as the increment of total humic-like substances (HULIS) concentration (the sum of humic and fulvic acid fractions in both dissolved and particulate form) normalized by total inorganic ion concentration in dew water. Our results indicate that total HULIS in dew water could enhance the dissolution of atmospheric VOCs into dew droplets.  相似文献   

6.
Chemical composition of dew in Amman, Jordan   总被引:4,自引:0,他引:4  
Twenty-six dew samples were collected on a glass surface from an urbanized area in Amman city during the period October 1999 to June 2000. They were analyzed for the major ions (Cl, SO4, NO3, Ca, Mg, Na, K and NH4) in addition to three heavy metals (Pb, Cd and Co). Rain samples were collected for the same period and compared to the chemical constituents of dew.It was found that both rain and dew samples were of almost neutral acidity due to the buffering effect of CaCO3. Dew composition was mainly from CaSO4 solution due to conversion of CaCO3 to CaSO4 when left exposed to a sulfate-rich atmosphere. The total dissolved solids were higher in dew than rain samples of the same period. This was attributed to higher evaporation effect on dew than rain.The heavy metal content in dew is highest during the cold winter season (December–March) due to excess fossil fuel combustion for heating purposes in this period. The heavy metal content in dew was lower than that for rain during the same period because of the shorter period of dew formation than rainwater.  相似文献   

7.
Canopy-level humidity is often less at night during fine weather in a mid-latitude city, compared to its rural surroundings. This feature has been attributed, in part, to reduced urban dew, but links are largely unproven, because urban dew data are rare. In this study, surface moisture (i.e., dew + guttation by blotting) and dewfall (by mini-lysimeter) were measured at rural and urban residential sites in Vancouver, Canada, during the summer of 1996. Air temperature and humidity were measured at both sites, and on rural-to-urban vehicle traverses. Weather and location effects were evident. Humidity data suggested the small (< 1 g m–3) urban moisture excess observed on fine nights was linked to reduced urban dew. For grass, the frequency of moisture events, and surface moisture amounts, were similar for both sites. However, on grass, rural dewfall (mean=0.10 mm per night) was more than urban dewfall (mean=0.07 mm per night). On the other hand, data for a roof lysimeter (mean dewfall=0.12 mm per night) showed that an urban roof could rival rural grass as a favoured location for dewfall in Vancouver.  相似文献   

8.
During nighttime, latent heat fluxes to or from the soil surface are usually very small and the absolute amounts of dew deposition are accordingly very small. The detection of such small fluxes poses serious measurement difficulties. Various methods for measuring dew have been described in the literature and most of them rely on the use of artificial condensing plates with physical properties that are very different from those of soil surfaces. A system that detects the actual dew deposition on the soil surface under natural conditions would be advantageous and microlysimeters (MLs) appear to be the obvious answer. The objectives of this work were to test the adequacy of microlysimeters to estimate condensation amounts, and to compare these amounts with those measured by a Hiltner dew balance in order to validate the long term data collected using the latter. The research was carried out at the Wadi Mashash Experimental Farm in the Northern Negev, Israel, during two measurement periods. A micro-meteorological station was installed in the field next to a modified Hiltner balance. A microlysimeter with an undisturbed soil sample was placed nearby. During the first period, the depth of the microlysimeter was 15 cm while at the second period it was 55 cm. The results show that for measuring dew, the minimum depth of a microlysimeter should exceed the depth at which the diurnal temperature is constant, which for a dry loess soil in the Negev Desert is 50 cm.  相似文献   

9.
The forest water balance has never been studied in Reunion Island (Indian Ocean). This study focuses on the interception of fog water by Sophora denudata, an endemic tree, which provides an important water input into the hydrologic budget of the upper-montane forest. Canopy throughfall, rainfall and fog have been compared. The first data were obtained in 2001 in Nez de Bœuf, 2040 m asl, from manual rain gauges. The measurements were made during the day only. The aim was to propose a typology of events, to understand the spatial pattern of canopy throughfall, especially fogdrip, and their relation to the trade-wind direction. A second series of experiments, carried out in 2004 in Piton de Tangues, 2150 m asl, investigated how throughfall and atmospheric water varied with time, using automatic instruments such as the shielded Grunow-type fog collector. Here measurements were made continuously and night data were not excluded. Over a period of 8 months, the throughfall gauges, which were placed under the trees, indicated 1180 mm whereas the total amount of rainfall had reached only 948 mm. The difference (232 mm) is attributed to fog. Of 278 events, 234 showed fog contribution; fog occurred alone in 167 cases. The observations confirm what was found in Nez de Bœuf, namely that fog or rain can occur separately or together. The role of fog contribution to the forest water budget is significant: the spatial variation of canopy throughfall does not only depend on the type of event, but also on wind direction.  相似文献   

10.
The study of fog dynamics in the island of Tenerife began in 1993 at six sites. The analysis of the relationship between fog and several meteorological parameters was conducted at the site located at Anaga. Anaga is located at the summit of a mountain range, at an altitude of 842 m and 3.5 km away from the north-western coastline of the island. The study uses hourly data of the three summer months (June, July and August) that were collected over a period of nine years — from 1996 to 2005. The mean summer (June–August) rainfall was found to be 21.2 mm whilst the total volume of fog water collected was 879.9 l m− 2; the daily average fog water collection was 9.5 l m− 2 day− 1, and the hourly average about 0.4 l m− 2 h− 1. Although these amounts were recorded with wind speeds of between 8 and 12 m s− 1, the correlation between water collected and wind speed is not statistically significant. In spite of this, the volume of fog water collected and wind speed showed a very distinct daily behavioural pattern, their frequency and speed reaching their minimum at 12 a.m. and their maximum from 7 p.m. to 8 a.m. GMT. The importance of this research is that it shows that the fog in the Canary Islands occurs more frequently and makes a more significant contribution to the growth of vegetation in the summer (the dry season) than in the winter, when fog accompanies rainfall.  相似文献   

11.
We report on the development of an inexpensive radiative condenser for collecting atmospheric vapor. Based on the experience gained using a small working model in Grenoble (France), a prototype of 10×3 m2 was established in Ajaccio (Corsica, France). The condensing surface is a rectangular foil made of TiO2 and BaSO4 microspheres embedded in polyethylene and has an angle of 30° with respect to horizontal. The hollow part of the device, thermally isolated, faces the direction of the dominant nocturnal wind. Dew measurements were correlated with meteorological data and compared to dew condensed on a horizontal polymethylmethacrylate (PMMA, Plexiglas) reference plate. The plate served as a reference standard unit and was located nearby. Between July 22, 2000 and November 11, 2001 (478 days), there were 145 dew days for the reference plate (30%), but 214 dew days for the condenser (45%). This yield corresponds to 767 l (3.6 l, on average, per dew day). The maximum yield in the period was 11.4 l/day. Dew mass can be fitted to a simple model that predicts dew production from simple meteorological data (temperature, humidity, wind velocity, cloud cover). Chemical analyses of the water collected from the plate were performed from October 16, 1999 to July 16, 2000 and from the condenser, from July 17, 2000 to March 17, 2001. The following parameters were investigated: suspended solids, pH, concentration of SO42−, Cl, K+, Ca2+ ions. Only Cl and SO42− ions were sometimes found significant. Wind direction analyses revealed that Cl is due to the sea spray and SO42− to the combustion of fuel by an electrical plant located in the Ajaccio Gulf. Except for a weak acidity (average pH≈6) and high concentration of suspended solids, dew water fits the requirements for potable water in France with reference to the above ions.  相似文献   

12.
Fog collection in the western Mediterranean basin (Valencia region, Spain)   总被引:1,自引:0,他引:1  
Four different mountainous locations were selected in the Valencia region, East coast of the Iberian Peninsula, for fog water collection studies. Data for 2004 were obtained by means of an instrument ensemble consisting essentially of a passive cylindrical fog water collector, a raingauge, a wind direction and velocity sensor and a temperature and humidity probe. An approximate data reduction technique was also found for this specific ensemble to eliminate the simultaneous rain water component from the fog water measurements. Main results indicate that fog water collection holds significant potential in this region, and especially for southern locations. Annual rates of fog water yield can be as high as 7.0 l/m2/day in the southern locations, in contrast to 2.0 l/m2/day collected at one site in a northern location. The highest summer fog water yield was 4.6 l/m2/day, a relatively large value. Except for the summer period, fog episodes delivering sizeable water volumes are inherently coupled to rainfall. Hourly frequencies of fog collection were also examined to show a distinct daily cycle in summer, denoting orographic fog formation during this period. Lastly, winds were analysed to resolve the most suitable directions for fog collector alignment.  相似文献   

13.
Towards Closing the Surface Energy Budget of a Mid-latitude Grassland   总被引:4,自引:1,他引:3  
Observations for May and August, 2005, from a long-term grassland meteorological station situated in central Netherlands were used to evaluate the closure of the surface energy budget. We compute all possible enthalpy changes, such as the grass cover heat storage, dew water heat storage, air mass heat storage and the photosynthesis energy flux, over an averaging time interval. In addition, the soil heat flux was estimated using a harmonic analysis technique to obtain a more accurate assessment of the surface soil heat flux. By doing so, a closure of 96% was obtained. The harmonic analysis technique appears to improve closure by 9%, the photosynthesis for 3% and the rest of the storage terms for a 3% improvement of the energy budget closure. For calm nights (friction velocity u * < 0.1 m s−1) when the eddy covariance technique is unreliable for measurement of the vertical turbulent fluxes, the inclusion of a scheme that calculates dew fluxes improves the energy budget closure significantly.  相似文献   

14.
This study examines the electricity in two thunderstorms, typical for their respective locales (the Great Plains and the New Mexico mountains), by modeling them as a set of steady-state horizontal layers of external currents. The model electric sources, corresponding to the charge separation processes in the thundercloud, are embedded in an exponential conducting atmosphere. The source parameters are determined by fitting the model electric field to measured profiles. The resulting currents to the ionosphere (i.e., the Wilson current) from the two storms are 0.53 A and 0.16 A, while the calculated electrical energies of the storms are 2.3 × 1010 J and 2.8 × 109 J, respectively. The more vigorous storm is estimated to transfer 16 000 C in the global circuit during 8.5 h of its lifetime, while the weaker mountain storm transferred about 1200 C in its entire 2-h lifetime. Removal of the screening charge layer from above the updraft region in one modeled storm leads to only a small increase in the net Wilson current of less than 3%, while it provides a substantial local disturbance of the electric field. Overall, the model findings indicate that differences in the Wilson currents and electrical energies of the two storms result from differences in their internal dynamical and electrical structures as well as their geographical locations.  相似文献   

15.
We suggest a quantitative one-dimensional model treating the formation of charge layers near the 0 °C isotherm in stratiform regions of mesoscale convective systems. A number of factors principal for the field generation have been taken into account: both non-inductive and inductive melting charging, light ions, a complicated profile of the vertical air velocity near the 0 °С isotherm, the boundary conditions proper for the horizontally extended systems in the global electric circuit. Non-inductive collisional charging near the 0 °C isotherm was not considered. It was found that both non-inductive and inductive melting mechanisms can contribute; the inductive melting charging of ice aggregates was found more preferable, while the contribution of non-inductive mechanisms might be significant depending on particular conditions. The role of light ions in the formation of the positive charge layer near the 0 °C isotherm may be important. If the advection from the convective region ensures charge inflow to the upper charged layers, the melting charging mechanisms are able to explain an observable electric field structure in the whole stratiform region. It is important that the mutual position of the zero point on the vertical air velocity profile and the point of maximum melting-charge-transfer determines the fine structure of the electric field in the vicinity of the 0 °C isotherm.  相似文献   

16.
The initial discharge stages of two flashes during the Shandong Artificially Triggering Lightning Experiment (SHATLE) are analyzed based on the synchronous data of the current and close electromagnetic field. For a lightning flash, named 0503, the wire was connected, not electrically, but via a 5 m length of nylon, with the lightning rod; while for another, named 0602, the wire was connected with the rod directly. Results show that the discharge processes of the initial stage (IS) in flash 0503 are quite different from that of the usual classical-triggered flash 0602 and altitude-triggered flashes. A large pulse with a current of about 720 A resulted from the breakdown of the 5 m air gap during flash 0503, and the corresponding electric field at 60 m from the lightning rod was 0.38 kV/m. The upward positive leaders (UPLs) propagated continuously from the tip of the rocket after this breakdown. The geometric mean (GM) of the UPL peak current was 23.0 A. Vaporization of the wire occurred during the initial continuous current (ICC) stage and the largest current pulse was about 400 A. Compared with triggered flash 0503, the discharge processes of IS in flash 0602 were simple, only two large pulses similar to each other occurred before dart leader/return stroke sequences. The peak current of the first pulse was 2.1 kA and its corresponding electric field and magnetic field at a distance of 60 m from the lightning rod were 0.98 kV/m and 7.03 μT, respectively. During the second pulse, the wire disintegrated. The current decreased to the background level at the moment of the wire disintegration. The current of the second pulse in triggered flash 0602 was 2.8 kA, and the corresponding electric field and magnetic field at 60 m from the lightning rod were 1.22 kV/m and 9.01 μT, respectively.  相似文献   

17.
Study of the total lightning activity in a hailstorm   总被引:1,自引:0,他引:1  
A thunderstorm that developed over northeastern Spain on 16 June 2006 is analyzed. This severe thunderstorm produced hailstones as large as 40 mm and had a lifetime of 3 h and 30 min. Radar cross-sections show strong vertical development with cloud echo tops reaching an altitude of 13 km. The specific characteristics of the lightning activity of this storm were: (i) a large amount (81%) of negative cloud-to-ground (−CG) flashes with very low peak currents (< 10 kA in absolute value), (ii) a very large proportion of intra-cloud (IC) flashes with an IC/CG ratio reaching about 400, (iii) a large number of “short” IC flashes (with only 1-VHF source according to SAFIR detection), (iv) a large increase of the −CG flash rate and of the CG proportion near the end of the storm. The rate of −CG flashes with a low peak current were observed to evolve similarly to the rates of IC flashes. Most of them have been assumed to be IC flashes misclassified by the Spanish Lightning Detection Network (SLDN). They have been filtered as it is usually done for misclassified +CG flashes. After this filtering, CG flash rates remained very low (< 1 min− 1) with +CG flashes sometimes dominant. All the particular lightning activity characteristics similar to those observed in the Severe Thunderstorm Electrification and Precipitation Study (STEPS) campaigns support the hypothesis that this thunderstorm could have had an inverted-polarity or complex charge structure. The maximum IC flash rate (67 min− 1) peaked 24 min before the presence of reflectivity higher than 60 dBZ. The IC activity abruptly decreased during the period when reflectivity was dramatically increasing. The time of maximum reflectivity observed by radar was consistent with the times of reported hail at the ground.  相似文献   

18.
Summary A regression-based methodology was used to downscale hourly and daily station-scale meteorological variables from outputs of large-scale general circulation models (GCMs). Meteorological variables include air temperature, dew point, and west–east and south–north wind velocities at the surface and three upper atmospheric levels (925, 850, and 500 hPa), as well as mean sea-level air pressure and total cloud cover. Different regression methods were used to construct downscaling transfer functions for different weather variables. Multiple stepwise regression analysis was used for all weather variables, except total cloud cover. Cumulative logit regression was employed for analysis of cloud cover, since cloud cover is an ordered categorical data format. For both regression procedures, to avoid multicollinearity between explanatory variables, principal components analysis was used to convert inter-correlated weather variables into uncorrelated principal components that were used as predictors. The results demonstrated that the downscaling method was able to capture the relationship between the premises and the response; for example, most hourly downscaling transfer functions could explain over 95% of the total variance for several variables (e.g. surface air temperature, dew point, and air pressure). Downscaling transfer functions were validated using a cross-validation scheme, and it was concluded that the functions for all weather variables used in the study are reliable. Performance of the downscaling method was also evaluated by comparing data distributions and extreme weather characteristics of downscaled GCM historical runs and observations during the period 1961–2000. The results showed that data distributions of downscaled GCM historical runs for all weather variables are significantly similar to those of observations. In addition, extreme characteristics of the downscaled meteorological variables (e.g. temperature, dew point, air pressure, and total cloud cover) were examined. Authors’ addresses: Chad Shouquan Cheng, Guilong Li, Qian Li, Atmospheric Science and Applications Unit, Meteorological Service of Canada Branch-Ontario, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4; Heather Auld, Adaptation and Impacts Research Division, MSC Branch, Environment Canada, Toronto, Canada.  相似文献   

19.
李肖霞  马舒庆  吴可军  张雪芬  杜波  卓问 《气象》2012,38(4):501-507
文章介绍了一套结露自动化观测装置,由CCD图像传感器、露采集器和处理器构成。露采集器由三层带有磨砂区域的玻璃片组成,CCD图像传感器获取玻璃片的图像传送给处理器,结露时磨砂区域与未磨砂区域亮度差值发生变化,处理器自动提取亮度差值及变化信息,识别结露是否发生,从而实现对结露的自动化观测。为了定量分析自动化结露观测装置的性能,设计了观测试验,利用温湿度计观测露采集器附近的温湿度,分析研究湿度与亮度差值及结露的关系,试验结果表明,相对湿度大于97.9%时开始结露,玻片亮度归一化差值迅速降低。结露的信息获取率百分之百,结露自动识别率大于85%。  相似文献   

20.
The aim of this paper is to show a climatology of Mesoscale Convective Systems (MCS) in the NE of the Iberian Peninsula, on the basis of meteorological radar observations. Special attention was paid to those cases that have produced heavy rainfalls during the period 1996–2000. Identification of the MCS was undertaken using two procedures. Firstly, the precipitation structures at the lowest level were recognised by means of a 2D algorithm that distinguishes between convective and non-convective contribution. Secondly, the convective cells were identified using a 3D procedure quite similar to the SCIT (Storm Cell Identification and Tracking) algorithm that looks for the reflectivity cores in each radar volume. Finally, the convective cells (3D) were associated with the 2D structures (convective rainfall areas), in order to characterize the complete MCS. Once this methodology was presented the paper offers a proposal for classifying the precipitation systems, and particularly the MCS. 57 MCS structures were classified: 49% of them were identified as linearly well-organised systems, called TS (39%), LS (18%) and NS (43%). In addition to the classification, the following items were analysed for each MCS found: duration, season, time of day, area affected and direction of movement, and main radar parameters related with convection. The average features of those MCS show an area of about 25000 km2, Zmax values of 47 dBz, an echotop of 12 km, the maximum frequency at 12 UTC and early afternoon and a displacement towards E-NE. The study was completed by analysing the field at surface, the presence of a mesoscale low near the system and the quasi-stationary features of three cases related with heavy rainfalls. Maximum rainfall (more then 200 mm in 6 h) was related with the presence of a cyclone in combination with the production of a convective train effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号