首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为探究砂土液化的微观机理,根据室内试验中微生物反硝化反应气泡的生成速率,建立数值模拟的时效性关系,分别制取微生物处理0天、2天、3天和5天的高饱和砂土试样,采用CFD-DEM耦合方法模拟不同工况下砂土试样的循环三轴不排水剪切试验。依据砂土试样的力链分布、抗液化振次、孔压比、轴向应变和力学配位数在加载过程中的变化情况,从宏微观角度分析砂土试样的抗液化能力。模拟结果表明:含微生物气泡高饱和砂土的抗液化强度较饱和砂土有所提升;随着微生物处理时间的增加,砂土试样的饱和度降低,孔压比和轴向应变的累积变慢,抗液化能力增强。  相似文献   

2.
In this paper, a novel coupled pore-scale model of pore-fluid interacting with discrete particles is presented for modeling liquefaction of saturated granular soil. A microscale idealization of the solid phase is achieved using the discrete element method (DEM) while the fluid phase is modeled at a pore-scale using the lattice Boltzmann method (LBM). The fluid forces applied on the particles are calculated based on the momentum exchange between the fluid and particles. The presented model is based on a first principles formulation in which pore-pressure develops due to actual changes in pore space as particles׳ rearrangement occurs during shaking. The proposed approach is used to model the response of a saturated soil deposit subjected to low and large amplitude seismic excitations. Results of conducted simulations show that at low amplitude shaking, the input motion propagates following the theory of wave propagation in elastic solids. The deposit response to the strong input motion indicates that liquefaction took place and it was due to reduction in void space during shaking that led to buildup in pore-fluid pressure. Soil liquefaction was associated with soil stiffness degradation and significant loss of interparticle contacts. Simulation results also indicate that the level of shaking-induced shear strains and associated volumetric strains play a major role in the onset of liquefaction and the rate of pore-pressure buildup.  相似文献   

3.
利用新研制的土工静力-动力液压三轴-扭转多功能剪切仪,在5种初始主应力方向角与5种中主应力系数相组合的初始固结条件下,对饱和松砂进行了不排水循环扭剪试验。讨论了初始固结条件对不排水条件下饱和松砂孔隙水压力变化规律及对剪胀、剪缩、卸荷体缩等体积变化过程的影响。试验研究表明:(1)分别以稳定残余孔隙水压力和破坏时循环次数归一化后的残余孔隙水压力比和循环次数比之间的关系可以用双曲线模式表达。其参数主要依赖于初始主应力方向,中主应力系数对参数的影响并不显著。归一化后的孔隙水压力比与广义剪应变之间的关系也可以用双曲线模式表达,其中的2个待定参数依赖于初始主应力方向,与中主应力系数无关;(2)在三向非均等固结条件下的不排水循环扭剪试验中,饱和松砂表现出卸荷体缩特性,不同初始主应力方向时,饱和松砂剪缩、剪胀、卸荷体缩呈现出不同的交替变化模式。  相似文献   

4.
To predict the earthquake response of saturated porous media it is essential to correctly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after earthquake shaking. To this end, a reliable numerical tool requires a dynamic, fully coupled formulation for solid–fluid interaction and a versatile constitutive model. Presented in this paper is a 3D finite element framework that has been developed and utilized for this purpose. The framework employs fully coupled dynamic field equations with a upU formulation for simulation of pore fluid and solid skeleton interaction and a SANISAND constitutive model for response of solid skeleton. After a detailed verification and validation of the formulation and implementation of the developed numerical tool, it is employed in the seismic response of saturated porous media. The study includes examination of the mechanism of propagation of the earthquake-induced shear waves and liquefaction phenomenon in uniform and layered profiles of saturated sand deposits.  相似文献   

5.
Presented in this paper are the results of the laboratory tests of sands performed for the purpose of defining the characteristics of the dynamic shear stress-shear strain relationships. For this purpose, the transformation of the initial stress-strain characteristics of undrained saturated sands was investigated separately. These transformations take place under conditions of an increase in pore pressure under the effect of sufficiently intensive dynamic excitations. The process of occurrence and development of liquefaction was investigated simultaneously. The obtained results show that the transformation of the stress-strain relationships leads to intensive reduction in the initial dynamic characteristics of sands. At the moment of occurrence of initial liquefaction, for the selected strain, shear moduli are considerably reduced in respect to their initial values. These parameters tend to be further reduced in the phase of post-initial liquefaction. It is concluded that the process of liquefaction of sands can be completely defined through the transformation of the stress-strain relationships.  相似文献   

6.
Accurate prediction of the liquefaction of saturated soils is based on strong coupling between the pore fluid phase and soil skeleton. A practical numerical method for large strain dynamic analysis of saturated soils is presented. The up formulation is used for the governing equations that describe the coupled problem in terms of soil skeleton displacement and excess pore pressure. A mixed finite element and finite difference scheme related to large strain analysis of saturated soils based on the updated Lagrangian method is given. The equilibrium equation of fluid-saturated soils is spatially discretized by the finite element method, whereas terms associated with excess pore pressure in the continuity equation are spatially discretized by the finite difference method. An effective cyclic elasto-plastic constitutive model is adopted to simulate the non-linear behavior of saturated soils under dynamic loading. Several numerical examples that include a saturated soil column and caisson-type quay wall are presented to verify the accuracy of the method and its usefulness and applicability to solutions of large strain liquefaction analysis of saturated soils in practical problems.  相似文献   

7.
A coupled continuum-discrete hydromechanical model was utilized to analyze the meso-scale pore fluid flow and micro-scale solid phase deformation of saturated granular soils. The fluid motion was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid particles. Well established semi-empirical relationships were used to quantify the fluid–particle interactions. Numerical simulations were conducted to investigate the mechanisms of granular deposit liquefaction in the presence of a critical upward pore fluid flow as well as when subjected to a dynamic base excitation. The outcome of these simulations was consistent with experimental observations and revealed valuable information on the micro-mechanical characteristics of soil liquefaction and associated loss of stiffness and strength.  相似文献   

8.
Based on the dynamic triaxial liquefaction test of the loess samples which are taken from Shibei tableland, Guyuan City, Ningxia, China, the characteristics of dynamic strain, dynamic stress and pore water pressure are studied under cyclic loading. Triaxial shear test is conducted immediately after the sample reaches liquefaction point. During the test, the property of the liquefied soil is analyzed through fluid mechanics method, whereby the fluidity of the liquefied soil is represented by apparent viscosity.The results show that the fluidity of liquefied loess changes from "shear thickening" to "shear thinning" as the shear force continues, and the fluidity of liquefied loess is closely related to its structure. In addition, in the process of forming a new stable state, the apparent viscosity and deviant stress change with axial strain in a similar approach. When the sample reaches its stable state, it meanwhile shows a relatively stable apparent viscosity. According to the fluid mechanics and the law of conservation of energy, the slip distance of the liquefied soil is estimated, and the results are in good agreement with the field investigation results.  相似文献   

9.
Flowslides that override a liquefied substrate can vastly enhance a disaster after failure initiation. These effects may result from the rapid velocity and long runout distance from slides mobilized into flows. It is thus crucial to provide an improved understanding of the transformation mechanisms of catastrophic flowslides for hazard evaluation. This study examines the Saleshan landslide in Gansu, China, which occurred in 1983 and killed more than 200 people. The Saleshan landslide travelled for approximately 1 km due to pore water pressure generation resulting from overrunning and liquefication of the alluvial sands in the river valley below. We used geomorphologic and topographic maps to determine its dynamic features and mobilization behaviors on the landslide body, and placemarks and seismic signals to identify its approximate velocity at different sites. Electrical resistivity tomography (ERT) surveys also revealed the hydrogeological conditions post-landslide, showing a clear groundwater table along with the liquefied alluvial sand and gravel layers. Particle size distributions and triaxial shear behaviors confirmed more ready liquefaction of superficial loess and underlying alluvial sand in comparison with the red soil above and below them. Novel loading impact triaxial testing was also performed on the alluvial sand to elucidate its liquefaction potential in undrained and drained conditions. The alluvial sand was found to be markedly prone to liquefaction in undrained conditions due to impact-induced increased pore water pressure. The results further demonstrated that the Saleshan landslide underwent a transformation from a slowing slide on a steep slope, where it originated, to flow on a nearly flat terrace with abundant groundwater that it overrode. The transformation mechanism involved the liquefied alluvium sand substrate, which greatly enhanced the landslide mobility. Along with recent, similar findings from landslides globally, substrate liquefaction may result in a widespread, significant increase in landslide mobility and thus hazard, and the present study identifies the requisite conditions for this phenomenon to occur.  相似文献   

10.
Numerical analyses of liquefiable sand are presented in this paper. Liquefaction phenomenon is an undrained response of saturated sandy soils when they are subjected to static or dynamic loads. A fully coupled dynamic computer code is developed to predict the liquefaction potential of a saturated sandy layer. Coupled dynamic field equations of extended Biot's theory with uP formulation are used to determine the responses of pore fluid and soil skeleton. Generalized Newmark method is employed for integration in time. The soil behavior is modelled by two constitutive models; a critical state two-surface plasticity model, and a densification model. A class ‘B’ analysis of a centrifuge experiment is performed to simulate the dynamic response of level ground sites. The results of the numerical analyses demonstrate the capability of the critical sate two-surface plasticity model in producing pore pressures that are consistent with observations of the behavior of liquefiable sand in the centrifuge test.  相似文献   

11.
应用FLAOD实现自由场液化数值模拟试验.试验结果验证了砂土液化典型特征:超静孔隙水压升高,有效应力降低,体积压缩积累增大.证实了液化的隔振作用:砂土在液化状态变为流体,不能传递剪力,液化时砂土位移、速度、加速度振幅显著降低,剪应力降低,动水向上渗流,土体向下沉降,水平残留不可恢复位移.球压应力、有效压应力、动水压力满...  相似文献   

12.
Critical state soil mechanics is a useful framework to understand sand behavior. In this paper, a relationship is developed for estimating undrained critical shear strength of sands based on the critical state framework. The relationship is validated by comparison with laboratory test results and sand liquefied strength from field liquefaction failure case histories. Using this relationship, the influence of fines content on undrained critical shear strength is studied for different combinations of effective stress and density. The parametric study indicates that depending on soil void ratio, effective stress, and the shape and mineralogy of the fine particles, undrained critical strength may increase, remain the same, or decrease as the amount of fines content increases. Both the susceptibility to liquefaction and the severity of strain-softening are affected by adding fines. It is suggested that the critical state parameter is inadequate for describing the behavior of liquefiable sands and sand shearing-compressibility should be taken into account in liquefaction analysis.  相似文献   

13.
Liquefaction of saturated loose sand is a major cause of extensive damage to buildings and infrastructures during large earthquakes. A better understanding of the behaviour of liquefied soil is becoming increasingly necessary to mitigate earthquake damage, and the fluid method has become an increasingly popular means to study the behaviour of liquefied soils. The purpose of this study is to determine the fluid characteristics of liquefied fine sand. In this paper, the apparent viscosity was measured as an index of fluid characteristics using the shaking table tests of pre-liquefaction behaviour of saturated fine sand at approximately 45 % relative density; the relationship of apparent viscosity and shear strain rate on liquefying fine sand was indicated as a power-law shear-thinning non-Newtonian fluid; and liquefying fine sand has the alternating behaviour of shear dilatancy and compressibility during cyclic loading. Additionally, a series of a monotonic axial compression loading tests in an undrained manner were performed to measure the shear stress and excess pore pressure ratio relationship on the post-liquefaction saturated fine sand at approximately 50 % relative density. The fluid characteristics of post-liquefaction fine sand exhibits rate dependence and can be described by a combined fluid model of time-independent and time-dependent power-law functions; the time-independent viscous resistance is not relevant to the excess pore pressure ratio; but the time-dependent frictional resistance is closely related to the excess pore pressure ratio. Furthermore, the results of the verification tests demonstrate that the proposed fluid model has good applicability for the fluid behaviour of the post-liquefaction fine sand.  相似文献   

14.
A series of undrained cyclic direct simple shear tests, which used a soil container with a membrane reinforced with stack rings to maintain the K0 condition and integrated bender elements for shear wave velocity measurement, were performed to study the liquefaction characteristics of gap-graded gravelly soils with no fines content. The intergrain state concept was employed to categorize gap-graded sand–gravel mixtures as sand-like, gravel-like, and in-transition soils, which show different liquefaction characteristics. The testing results reveal that a linear relationship exists between the shear wave velocity and the minor fraction content for sand–gravel mixtures at a given skeleton void ratio of the major fraction particles. For gap-graded gravelly sand, the gravel content has a small effect on the liquefaction resistance, and the cyclic resistance ratio (CRR) of gap-graded gravelly sands can be evaluated using current techniques for sands with gravel content corrections. In addition, the results indicate that the current shear wave velocity (Vs) based correlation underestimates the liquefaction resistance for Vs values less than 160 m/s, and different correlations should be proposed for sand-like and gravel-like gravelly soils. Preliminary modifications to the correlations used in current evaluations of liquefaction resistance have thus been proposed.  相似文献   

15.
前人曾指出液化后伴随着超孔隙水压重新分配的渗透会引起流体破坏的可能性。为了研究这一现象,利用实验室三轴试验将孔隙水注入土壤检测了土壤的渗透剪切破坏。该实验是在各项异性的固结作用后保持差应力,使用孔隙水控制装置在体积不变的应变控制条件下将孔隙水注入。实验中所用的材料是在1995年神户地震时被液化的常规洁净细砂和风化的花岗岩土壤。本文以实验结果为基础,讨论了由孔隙水注入引起的渗透剪切破坏判据和导致后液化行为的剪切应变发展特征。  相似文献   

16.
采用不排水条件下孔隙水压力发展模式,作为Terzagh i一维固结方程中考虑波浪循环作用所引起的孔隙水压力源项,对于成层海床建立了推广的一维动力固结方程,运用数理方程中的分离变量法与G reen函数求解了成层海床在波浪作用下残余孔隙水压力的发展规律,进而对成层海床的液化势进行了评判。对比计算与分析表明,海床表层土的渗透性及其厚度对于海床的整体抗液化性能具有显著的影响,低渗透性的表层导致海床孔隙水压力的显著积累,此时表层置换法是防治液化的有效途径。  相似文献   

17.
Pore water pressure generation during earthquake shaking initiates liquefaction and affects the shear strength, shear stiffness, deformation, and settlement characteristics of soil deposits. The effect of plastic fines (kaolinite) on pore pressure generation in saturated sands was studied through strain-controlled cyclic triaxial tests. In addition to pore pressure generation, this experimental study also focused on evaluating the threshold shear strain for pore pressure generation and the volumetric compressibility of specimens during pore pressure dissipation. The results reveal that specimens having up to 20% plastic fines content generated larger values of pore water pressure than clean sand specimens. At 30% fines content, the excess pore water pressure decreased below that of clean sand. The threshold shear strain, which indicates the strain level above which pore pressures begin to generate, was assessed for different kaolinite–sand mixtures. The threshold shear strain was similar for 0–20% fines (γt0.006–0.008%), but increased to about 0.025% for 30% fines. The volumetric compressibility, measured after pore pressure generation, was similar for all specimens. The transition of behavior at fines contents between 20% and 30% can be attributed to a change in the soil structure from one dominated by sand grains to one dominated by fines.  相似文献   

18.
地震波传播激发的不同尺度的流固相对运动(宏观、中观和微观)是许多沉积岩地层中地震波频散和衰减的主要原因,然而野外观测和试验测量都难以对非均匀多孔介质孔隙压力弛豫物理过程进行精细刻画.通过数字岩石物理技术,本文建立了三个典型的数字岩心分别用于表征孔隙结构、岩石骨架和斑状饱和流体引起的非均质性,利用动态应力应变模拟技术计算数字岩心的位移和孔隙流体增量图像.通过分析和比较三个数字岩心的位移和孔隙压力增量图像,细致刻画了发生于非均匀含流体多孔介质内的宏观、中观和微观尺度的流固相对运动:1)宏观尺度的波致孔隙流体流动导致波长尺度上数字岩心不同区域的孔隙压力和位移差异;2)中观尺度的流体流动发生在软层与硬层之间、气层与液层之间;3)微观尺度的流体流动发生在孔隙内部或相邻孔隙之间.数值模拟试验也证明基于数字岩心的动态应力应变模拟技术可以从微观尺度上更好的理解波致孔隙流体流动发生的物理机理,从而为建立岩石骨架、孔隙流体、孔隙结构非均质性和弹性波频散-衰减特征的映射关系奠定基础.  相似文献   

19.
利用GDS循环三轴仪进行一系列饱和砂砾土不排水动三轴液化试验,研究其在循环荷载作用下的液化特性,分析含砾量对饱和砂砾土动强度和动孔压的影响规律。研究表明:含砾量对砂砾土液化性能影响较大,随着含砾量的增加砂砾土抗液化强度呈单调增加趋势;随循环周次的增加孔隙水压力不断升高,增长速率与所施加的循环应力幅值有关,同一固结压力下,振次比相同时循环动应力幅值越大动孔压比越大;破坏振次对动孔压增长模式存在影响,破坏振次较小时砂砾土动孔压增长模式呈双曲线型发展,破坏振次较大时砂砾土的动孔压增长模式可用反正弦函数来表示,且含砾量越大循环荷载引起的孔隙水压力越高;含砾量对砂砾土液化特性的影响可从砂砾土的微细观结构特征得到阐释,并借助其粒间状态参量进行分析。  相似文献   

20.
This paper investigates the cyclic and post-cyclic shear behavior of low-plasticity silt and the impact of additional clay content. Bentonite clay was added to the low-plasticity Mississippi River Valley (MRV) silt (PI=6) to increase the clay content of the soil. A series of triaxial tests were conducted in the laboratory to examine the shear and pore pressure behavior during and after cyclic loading. As the bentonite content in the reconstituted specimens increased, the excess pore pressure developed at a slower rate and the total excess pore pressure decreased at the end of cyclic loading. In contrast to the MRV silt, the specimens modified with bentonite experienced cyclic softening rather than initial flow liquefaction. The cyclic shear strength increased with an increase in bentonite content. The post-cyclic reconsolidation behavior was a similar to a virgin compression process, and not recompression. Adding bentonite to the MRV silt results in changes in permeability, compressibility, undrained shear strength, and initial stiffness. Additionally, the cyclic loading had a marked effect on the shear behavior of low-plasticity soil with a PI<6, but not noticeable with a PI>6. This study suggests that the behavior of the Mississippi River Valley silt changes from contractive sand-like material to clay-like behavior at a PI≈6 due to the addition of clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号