首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of streambed sediment on benthic ecology   总被引:5,自引:2,他引:3  
Benthic macroinvertebrates have been commonly used as indicator species for assessment of aquatic ecology. Streambed sediment, or substrate, plays an important role in habitat conditions for macroinvertebrate communities. Field investigations were done to study the benthic diversity and macroinvertebrate compositions in various stream substrata. Sampling sites with different bed sediment, latitude, and climate were selected along the Yangtze River, the Yellow River, the East River, and the Juma River, in China. The results show that benthic community structures found in different substrata clearly differ, while those found in substrata of similar composition and flow conditions but in different macroclimates are similar. The study, thus, demonstrates that the benthic macroinvertebrate community is mainly affected by substrate composition and flow conditions, but is generally unaffected by latitudinal position and macroclimate. Taxa richness of the maeroinvertebrate community was found to be the highest on hydrophyte-covered cobbles, high on moss-covered bedrock, and low on clay beds and cobble beds devoid of plant biomass. Sandy beds are compact and unstable, thus, no benthic macroinvertebrates were found colonizing such substrata. Aquatic insects account for most of the macroinvertebrates collected in these rivers. Different insects dominate in different types of substrata: mainly EPT species (Ephemeroptera, Ptecoptera, Tfichoptera) in cobble, gravel, and moss-covered bedrock; and Chironomidae larvae in clay beds. The relation between the number of species in the samples and the size of the sampling area fits a power function of the species area. One square meter (lm) is suggested as the minimum sampling area. A substrate suitability index is proposed by integrating the suitability of sediment, periphyton, and benthic organic materials for macroinvertebrates. The biodiversity of macroinvertebrates increases linearly with the substrate suitability index. Benthic taxa richness increases linearly with the suitability index.  相似文献   

2.
In this study we examined the importance of seasonal changes in habitat features and aquatic macroinvertebrate responses in temporary and perennial streams from two different catchments in the Western Mediterranean region in Spain. Macroinvertebrate sampling was spatially intensive to account for the relative frequency of meso- (i.e., riffles and pools) and micro-habitats (i.e., different mineral and organic-based substrata) at each site. Samples were collected at two distinctly different phases of the hydrograph: (1) during the flowing period, when pool-riffle sequences were well-established, and (2) during the dry phase, when only isolated pools were expected to occur in the temporary streams. During the dry season, both a reduction in the available total habitat and in microhabitat diversity in all sites studied was observed. As a result, taxon richness decreased in all streams, but more dramatically at temporary stream sites and particularly so in the infrequently remaining discontinuous riffles. Macroinvertebrate assemblages differed among catchments (i.e., geographical identity) and sites (perennial vs. temporary). Invertebrate differences were also strong within and among meso- and micro-habitats, particularly mineral and organic microhabitat patches, and differences were due to both loss of taxa from some habitats and some taxa exhibiting certain habitat affinities.  相似文献   

3.
The aim of the study was to evaluate pattern of the aquatic macrophyte species distribution along the Danube fluvial corridor in Slovakia, and to identify the impact of environmental abiotic parameters on macrophyte species diversity. Field sampling was performed in the period 1999–2005 from the boat. Aquatic habitats were divided into 365 survey unit (SU). The survey of aquatic macrophytes and abiotic parameters followed the European standard approach EN 144184 2003. The plant mass estimate (PME – a semi-quantitative estimation of the amount of individual species in a SU, which takes into account three-dimensional development of plant stands) was estimated according to a five-point-scale in each SU; environmental pattern, were assessed over six abiotic parameters (river km, bank type, sediment type, flow velocity class, land-use type, and heavily man-modified water bodies). Altogether, four hydrologic connectivity types of aquatic habitats were distinguished: the Danube River, Open Arms, Separated Arms, and Seepage Water-bodies.

In total, 54 aquatic macrophytes were recorded for the whole data set of the Danube fluvial corridor. The PME data of true aquatic macrophytes and the length of SUs created a basis for numerical derivates, relative plant mass (RPM), mean mass indices (MMT, MMO) and the distribution ratio (d).

The results correspond with comparable studies on this topic: the highest macrophytes species diversity occurred in Separated Arms. On the contrary, macrophytes had the lowest richness in the Danube River main channel, although their diversity was slightly higher in heavily man-modified water bodies (such as the hydropower plant's reservoir and the abandoned main channel of the so-called Old Danube). Our results suggest that the lateral connectivity types of the river water bodies, primarily characterised by different hydrologic dynamics and human impact expressed as land-use types are responsible for the variability of aquatic macrophyte assemblages along the Danube corridor in Slovakia.  相似文献   


4.
The aquatic vegetation of ?í?ov Lake in the Danube floodplain, which is listed in the Ramsar Convention, was investigated to address three main questions: (1) how have landscape composition and the structures of the lake and its buffer zone changed from the mid-20th century; (2) how have species richness and the abundance of the aquatic macrophyte assemblage in this lake ecosystem changed over the last 34 years; and (3) which landscape metrics can best explain these temporal changes for floating-leaved macrophytes? Two methodological approaches, remote sensing and botanical field surveys, were applied. Historical (1949, 1970, 1990) and contemporary (2006) aerial photographs were analysed to determine land cover. Landscape configuration and structure were analysed using eight landscape metrics selected in advance to measure spatio-temporal changes and the fragmentation of the lake ecosystem and its corresponding buffer zone. The species diversity, abundance and distribution of true aquatic macrophytes were surveyed eleven times in five survey stretches between 1973 and 2007.At the landscape level, a decrease in the area covered by floating-leaved macrophytes, as well as an increase in open water surface and fragmentation of the land cover classes in the lake ecosystem, were recorded from 1949 to 2006. Overall, 30 true aquatic macrophytes were found from 1973 to 2007. Species richness did not change considerably, but the abundance of aquatic species fluctuated over the years. Three groups of true aquatic vegetation, based on common structural characteristics, were found in 1973–1983, 1989–2002, and 2004–2007 over the last 34 years. The landscape metrics NP, PD, LPI, and SHDI, which all express patterns of landscape fragmentation mostly indicate temporal changes in floating-leaved macrophytes.  相似文献   

5.
Measuring ecological change of aquatic macrophytes in Mediterranean rivers   总被引:1,自引:0,他引:1  
A metric was developed for assessing anthropogenic impacts on aquatic macrophyte ecology by scoring macrophyte species along the main gradient of community change. A measure of ecological quality was then calculated by Weighted Averaging (WA) of these species scores at a monitoring site, and comparison to a reference condition score. This metric was used to illustrate the difficulties of developing aquatic macrophyte indices based on indicator species in Mediterranean rivers. The response of the metric to a nutrient gradient was examined within two different river typologies: the national typology designed for the Water Framework Directive and a typology that segregates the environmental variables to produce maximum species similarity within a river type. Both typologies showed the strong north-south climatic divide in Portugal, with southern rivers having long periods without rainfall and often without flowing water in the summer. Overall, the metric responded well to nutrient impacts however it performed poorly in some southern lowland river types. This was thought to be due to low numbers of aquatic macrophytes in temporary rivers. Non-aquatic species that establish in the river channel of temporary rivers may have to be included in indices to improve performance. Also, simple Weighted Averaging (WA) metrics may be insensitive to abundance changes and loss of rarer indicators in lowland Mediterranean rivers. More sophisticated methods of using WA are suggested, as well as further research into developing assessment methods specific to the character of Mediterranean rivers.  相似文献   

6.
Variation in habitat structure provided by macrophytes is regarded as one of the determinants of macroinvertebrate species composition in lentic ecosystems, but mechanisms underlying this relationship appear to be confounded with site-specific factors, such as physicochemical factors, epiphyton and composition of the vegetation. To better understand the relationship between structural complexity of a macrophyte stand and its macroinvertebrate assemblage composition, it is essential to determine the ecological role of different components of habitat structure for the phytomacrofauna. Using artificial structures as macrophyte mimics, representing three growth forms (stems, broad-leaved, finely dissected) and three structure surface areas (0.1, 0.2, 0.3 m2), a full factorial field experiment was conducted in a series of drainage ditches. We investigated if macroinvertebrate assemblages colonizing the structures were affected by an increase in macrophyte structure surface area, structural complexity, or by a combination of both, and if the observed patterns were consistent among sites differing in physicochemical and habitat characteristics. Assemblages were characterized both in terms of taxonomic and functional composition, because we expected that non-taxonomic aggregation of species into functional categories would give a different insight in habitat complexity-macroinvertebrate relationships in comparison to approaches based on the taxonomic assemblage composition. Ditch intrinsic factors, in part reflected in the periphyton on the structures, explained the major proportion of the variance in both the taxonomical macroinvertebrate assemblages and functional groups among structures. Contrary to our expectation, patterns in the taxon-based and functional dataset resembled each other. Only a minor contribution of growth form to the explained variance was observed in the taxonomical dataset, whilst differences in functional composition were unrelated to habitat structure. In conclusion, processes operating on larger spatial scales overrode the micro-scale effects of habitat structural complexity and surface area on macroinvertebrates.  相似文献   

7.
Rooted aquatic macrophytes affect abiotic conditions in low-gradient rivers by altering channel hydraulics, consuming biologically available nutrients, controlling sediment transport and deposition, and shading the water surface. Due to seasonal macrophyte growth and senescence, the magnitude of these effects may vary temporally. Seasonal changes in aquatic macrophyte biomass, channel roughness and flow velocity, were quantified and trends were related to spatiotemporal patterns in water temperature in a low-gradient, spring-fed river downstream from high-volume, constant-temperature groundwater springs. Between spring and summer, a nearly threefold increase in macrophyte biomass was positively correlated with channel roughness and inversely related to flow velocity. On average, flow velocity declined by 34% during the study period, and channel roughness increased 63% (from 0.064 to 0.104). During the spring and fall period, the location of a minimum water temperature variability “node” migrated upstream more than 4 km, whereas daily maximum water temperature cooled by 2–3°C. Water temperature modelling shows that the longitudinal extent of cold-water habitat was shortened due to increased channel roughness independent of seasonal surface water diversions. These results suggest that macrophyte growth mediates spatiotemporal patterns of water temperature, constraining available cold-water habitat while simultaneously improving its quality. Understanding complex spatial and temporal dynamics between macrophyte growth and water temperature is critical to developing regulatory standards reflective of naturally occurring variability and has important implications for the management and conservation of cold-water biota.  相似文献   

8.
Aquatic macrophytes can severely retard flow rates in the river channels that they occupy. Consequently, there is a need to improve our ability to model vegetation resistance, to aid flood prediction and allow for better-informed channel management. An empirical model is developed to calculate flow resistance (Manning’s resistance coefficient) of channels containing the submergent macrophyte Ranunculus (water-crowfoot). Blockage factors (the proportion of a cross-section blocked by vegetation) were determined for up to nine cross-sections at each of 35 river sites. These were used to create blockage-factor percentiles, which were regressed against vegetation resistance. An exponential best-fit relation involving the 69th blockage-factor percentile gave the best results. A parameter relating the length of the vegetated/solid boundary in contact with the open channel to the length of the conventionally-defined wetted perimeter improved the model fit by acting as a pseudo-measure of the turbulent-energy losses generated within the unvegetated stream by the macrophytes. The model was tested on three additional sites containing different macrophyte species and much higher vegetation blockages, and was found to work well.  相似文献   

9.
Decomposition incorporates organic material delivered by Pacific salmon (Oncorhynchus spp.) into aquatic and terrestrial ecosystems of streams where salmon spawn. We hypothesized that salmon tissue decomposition would be faster, and macroinvertebrate abundance and biomass higher, in terrestrial compared to aquatic habitats, and this would be reflected in the nutritional quality of the tissue. Salmon tissue in coarse-mesh bags was placed in four habitats [terrestrial: riparian (RIP), gravel bars (GRA); aquatic: stream sediment surface (STR), buried in sediments (BUR)] in four southeast Alaska watersheds. After 2 (RIP, GRA) or 4 (STR, BUR) weeks of decomposition, tissue dry mass, macronutrient content, and macroinvertebrate colonizer abundance and biomass were determined. Overall, tissue decomposition was rapid (mean k = 0.088 day?1), while nutritional quality remained high based on elemental ratios (mean C:N = 4.9; C:P = 140; N:P = 30), and differed among habitats (Linear-mixed effects model p < 0.05). Macroinvertebrate assemblages colonizing carcasses were unique to each habitat, although Diptera generally dominated. In terrestrial habitats, the dominant macroinvertebrates were Sphaeroceridae (96 % of invertebrate abundance in RIP habitat) and Calliphoridae larvae (98 % in GRA habitat). In aquatic habitats, the dominant macroinvertebrates were Chironomidae (48 % in STR habitat) and Chloroperlidae (72 % in BUR habitat). Macroinvertebrate colonizer abundance and biomass were higher in RIP (mean 286 individuals and 22 mg g?1) than in other habitats (mean 4 individuals and 3 mg g?1) (Friedman p < 0.05). Rapid decomposition rates and high invertebrate biomass, combined with the high nutritional quality of tissue, suggest rapid incorporation of critical salmon nutrients and energy into both aquatic and terrestrial ecosystems.  相似文献   

10.
Riverbank stabilization using rock riprap is commonly used for protecting road and bridge structures from fluvial erosion. However, little is known about how streams adjust to such perturbation or how this can affect fish habitat in different fluvial environments, particularly for non‐salmonid species in small streams. The objective of this study is to assess impacts of riprap on fish habitat quantity and quality through a pairwise comparison of 27 stabilized and non‐stabilized stream reaches in two physiographic regions, the Saint Lawrence Lowlands and the Appalachian highlands of Montérégie‐Est (Quebec, Canada). Both quantitative (Hydro‐morphological Index of Diversity, HMID) and qualitative (Qualitative Habitat Evaluation Index, QHEI) fish habitat assessment techniques are applied in order to compare results between methods. For each stream reach depth and velocity were measured to calculate HMID. In‐stream cover (woody debris, overhanging vegetation, undercut banks, aquatic macrophytes) and habitat units (pools, riffles, runs, glides) were also documented and used to determine QHEI. Results show that overall bank stabilization using riprap at bridge and stream crossings alters fish habitat characteristics. Loss of in‐stream covers and riparian vegetation lower QHEI scores at stabilized reaches, especially in more pristine Appalachian streams, but has less impact on already altered straightened Lowlands streams. In this latter context, some positive alterations of fish habitat were observed in riprapped reaches due to the coarsening of the substrate and an induced increase of slope. The two metrics (HMID and QHEI) revealed similar differences between stabilized and non‐stabilized sites for Lowlands sites, but their level of agreement was much less in the Appalachian streams, suggesting caution when interpreting habitat quality results based on a single metric. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River, southern Appalachians. Surface water temperature was recorded over three or four mid‐summer days in four mesoscale habitat types: riffle, main riffle, pool and alcove in 44 stream segments (sites). Temperature metrics were calculated for each mesoscale habitat relative to the mean value of the metric over the stream: Δ maximum temperature, Δ average maximum temperature and Δ maximum daily variation and also for each site: standard deviation of the maximum temperature and average diurnal variation (ADV). Sites were categorized as fully or partially forested. Pool tailouts had statistically significantly lower Δ maximum temperature and Δ average maximum temperature than riffle tailouts in partially forested sites, although differences were small. This was the opposite of what was expected in the presence of hyporheic exchange, indicating hyporheic exchange is not a dominant driver of mesoscale habitat temperatures at these sites. Temperature differences between mesoscale habitat units were small and unlikely to have ecological significance. We also evaluated relationships between stream temperature and riparian condition, watershed % impervious surfaces, watershed % non‐forested and elevation. ADV and standard deviation of the maximum temperature were significantly higher in partially forested sites, indicating that partially forested sites have greater temperature ranges and spatial variation of maximum temperatures. ADV decreased with elevation and increased with % impervious surfaces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Does the Structural Quality of Running Waters Affect the Occurrence of Macrophytes? The morphological structure plays, besides e.g. nutrient concentration, an important role for the integrated assessment of running waters. This paper focuses on the relationship between structural quality and macrophyte vegetation. During summer 2000 structural quality according to LAWA, macrophyte vegetation, and selected habitat parameters were recorded in 135 mapping sections in running waters in Southern Germany. In streams of high structural diversity, generally higher species richness is expected than in rivers of low diversity of habitats. However, no significant differences in macrophyte species richness were detected between different classes of structural quality. In contrast, bryophytes alone showed a significant decrease in species richness with degradation of structural quality. The number of species of other macrophytes increased, respectively. The relationship between occurrence of macrophytes, structural quality, and other environmental variables was analysed using canonical correspondence analysis. Rivers of high structural quality mostly showed high flowing velocities and were heavily shaded. These environmental conditions, which characterize river types of mountainous regions, were predominantly tolerated by bryophytes. Vascular plants and charophytes generally prefer slowly flowing and unshaded habitats. River types exhibiting these environmental conditions often are more influenced by human activities and are more structurally degraded, respectively. With respect to these fundamental differences between river types, species richness of macrophytes and class of structural quality are not correlated when all types of rivers are taken into account. Type‐specific ecomorphological parameters, which conceal the differences in species richness caused by structural quality, are discussed. Structural degraded rivers can provide good environmental conditions for vascular plants and charophytes. To predict macrophyte species richness from structural quality, a differentiation of river types is essential.  相似文献   

14.
蒙新高原湖泊高等水生植物和大型底栖无脊椎动物调查   总被引:2,自引:2,他引:0  
2008年7月和9月调查了我国蒙新高原12个湖泊的高等水生植物和大型底栖无脊椎动物,除阜康天池外皆采集到了水生植物和底栖动物.水生植物共有8科12种,优势种为芦苇和蓖齿眼子菜.底栖动物共鉴定出4门8纲26科64种(属),优势类群为摇蚊和水丝蚓.乌梁素海的水生植物和底栖动物种类最丰富,分别为9种和35种(属).乌梁素海和哈素海全湖都有水生植物分布,但其它湖泊仅分布在个别湖湾.不同湖泊间的底栖动物群落相似性很低.将蒙新地区湖泊湖区分为敞水区、沿岸带水生植物区和强劲湖流区.底栖动物在沿岸带水生植物区的多样性比敞水区高,优势集中性比敞水区低,而强劲湖流区无底栖动物.沿岸带水生植物区不同类型生境中的底栖动物群落相似性分析表明沉水植物密布、风生湖流微弱生境中的底栖动物最丰富,风生湖流强劲生境中无底栖动物.总体上,蒙新高原湖泊水生植物和底栖动物群落相似性较低,要保护湖泊生物多样性,建议对每个湖泊进行适当保护,重点保护风生湖流较弱的沉水植物区.  相似文献   

15.
富营养化湖泊围隔中重建水生植被及其生态效应   总被引:1,自引:0,他引:1  
胡旭  何亮  曹特  倪乐意  谢平 《湖泊科学》2014,26(3):349-357
水体富营养化导致水生植被衰退、蓝藻水华暴发、水质恶化和水生生态系统崩溃.恢复水生植被被认为是改善受损水体水质和提高其生态系统稳定性的重要手段.本研究通过构建大型围隔,根据水生植物的耐污程度及其对水质和底质等条件的需求,选取几种适宜的水生植物在围隔内进行移栽与群落构建,并以不移栽水生植物的围隔和围隔外水体作为对照.实验期间(2011年4月至2012年6月),围隔内移栽的几种水生植物全部存活,并建立了相对稳定的群落.同时还跟踪监测了3个处理组的水质情况,结果显示,移栽水生植物的围隔内水质明显优于围隔外,与未移栽水生植物围隔相比,也有很大程度的改善,其中移栽水生植物围隔内水体的总氮、铵态氮、总磷、水下消光系数相比于围隔外水体分别低30.55%、44.09%、36.04%和42.13%,相比于未移栽水生植物围隔内水体分别低5.96%、13.40%、6.70%和7.60%,透明度分别比围隔外水体和未移栽水生植物围隔水体高74.59%和8.70%,浮游植物生物量也大大低于围隔外,而浮游动物生物量却明显高于后者.此外,实验后移栽水生植物围隔内沉积物氮、磷含量及其间隙水总氮、总磷、铵态氮浓度明显低于围隔外和未移栽水生植物围隔.研究表明,在富营养化浅水湖泊中通过建立围隔进行合理的群落配置,进而逐步恢复水生植物是完全可行的,而水生植物恢复后加强对其管理和维护至关重要.  相似文献   

16.
We examined the distribution of submerged and emergent macrophyte species and the entire macrophyte community within and between five lake types (highland reservoirs, alkali lakes, large shallow lakes, small to medium sized shallow lakes, marshes) in the Pannon Ecoregion, Hungary. The lowest submerged, emergent and total species richness was found in alkali lakes. The highest submerged macrophyte richness was in small to medium sized lakes, while the highest emergent macrophyte species richness was in reservoirs, small to medium sized lakes, and marshes. The values of within-lake type beta diversity were generally lower than the values of alpha diversity, especially for submerged macrophytes, indicating between site homogeneity in species composition within the lake types. Emergent macrophyte communities contributed the most to within and between lake type diversity and total (gamma) diversity. Canonical correspondence analyses showed that the main environmental variables which influenced the distribution of submerged macrophytes were conductivity, Secchi transparency and water nitrogen contents. For emergent macrophytes conductivity, lake width, altitude and water depth proved to be the most influential variables. Our results contribute to the knowledge of large-scale distribution of macrophytes in the Pannon Ecoregion and to the identification of conservation value of lakes using macrophytes. The results support the importance of small lakes and artificial lakes in the conservation of macrophyte diversity compared to large and natural lakes in the Pannon Ecoregion.  相似文献   

17.
Cross-taxon responses to elevated nutrients in European streams and lakes   总被引:1,自引:0,他引:1  
Few studies have compared the response of different taxonomic groups to environmental stress across aquatic ecosystems. We regressed assemblage structure of fish, invertebrates, macrophytes, phytoplankton and benthic diatoms to total phosphorus concentration, after removing the effect of ecosystem size (stream order, lake surface area), using data from 66 streams and 45 lakes across Europe. In streams, the structure of benthic diatom assemblages, measured by nonmetric multidimensional scaling, showed the strongest correlation to elevated nutrient concentrations (adj. R2 = 0.495), followed by benthic invertebrates (0.376), fish (0.181) and macrophytes (0.153). For lakes, the patterns were less clear: fish (0.155), macrophytes (0.146) and phytoplankton (0.132). Cross-system comparison showed that stream assemblages were responding more strongly to nutrient concentrations than lake assemblages. Moreover, our results lend some support to the conjecture that response signatures are related to trophic level, with primary producers (benthic diatoms) responding more strongly than consumers (invertebrates, fish). Knowledge of differences in responses among taxonomic groups and between habitats to disturbance can be used to design more cost-effective monitoring programs.  相似文献   

18.
We examined the relevance of dissolved inorganic nitrogen (DIN) forms (nitrate and ammonium) in stream water as N sources for different macrophyte species. To do this, we investigated the variability and relationships between 15N natural abundance of DIN forms and of four different macrophyte species in five different streams influenced by inputs from wastewater treatment plants and over time within one of these streams. Results showed that 15N signatures were similar in species of submersed and amphibious macrophytes and in stream water DIN, whereas 15N signatures of the riparian species were not. 15N signatures of macrophytes were generally closer to 15N signatures of nitrate, regardless of the species considered. Our results showed significant relationships between 15N signatures of DIN and those of submersed Callitriche stagnalis and amphibious Veronica beccabunga and Apium nodiflorum, suggesting stream water DIN as a relevant N source for these two functional groups. Moreover, results from a mixing model suggested that stream water DIN taken up by the submersed and amphibious species was mostly in the form of nitrate. Together, these results suggest different contribution to in-stream N uptake among the spatially-segregated species of macrophytes. While submersed and amphibious species can contribute to in-stream N uptake by assimilation of DIN, macrophyte species located at stream channel edges do not seem to rely on stream water DIN as an N source. Ultimately, these results add a functional dimension to the current use of macrophytes for the restoration of stream channel morphology, indicating that they can also contribute to reduce excess DIN in streams.  相似文献   

19.
Partitioning beta diversity into its two components of spatial turnover and nestedness is a more robust method for checking spatial variability in biological communities than calculating the total beta diversity alone. The relative contribution of spatial turnover and nestedness has been used to test the effects of climatic, environmental, spatial and temporal variables on community composition. In this study, we tested the effects of environmental factors and microhabitat features on total beta diversity and its spatial turnover and nestedness components using a comprehensive dataset of aquatic Heteroptera collected from four types of permanent freshwater habitats (i.e. streams, ponds, rock tanks and reservoirs) in the Western Ghats of India. We observed that communities in all four types of habitats were predominantly shaped by dissimilarity caused due to spatial turnover (>85 %). Each type of habitat showed the presence of one or more species uniquely associated with it, which might contribute to the turnover between communities. The abiotic environment (climatic factors, topological factors, soil characteristics and microhabitat features) as well as assemblage structure differed significantly between habitat types. Communities in each type of habitat were affected by different environmental factors, such as precipitation and temperature patterns for streams, altitude and rocky substrate for rock tanks, and soil characteristics and the presence of aquatic macrophytes for ponds and reservoirs. Assemblages observed in the four types of permanent habitats are thus compositionally distinct due to species replacements between local communities, which in turn are strongly influenced by environmental variables. Similar to previous studies, our results show that spatial turnover largely measures the same phenomenon as total beta diversity on a regional scale.  相似文献   

20.
Feeding interactions among functional feeding groups (FFGs) of macroinvertebrates are robust indicators of aquatic ecosystem interactions. They provide information regarding organic matter processing, habitat condition and trophic dynamics. In tropical rivers with pronounced wet and dry seasons, macroinvertebrate based ecological monitoring tools are explicitly focused on metrics and indices, while ignoring interactions of FFGs. Therefore, the objective of this study was to investigate the functional feeding type metrics, diversity indices and feeding interactions among FFGs of macroinvertebrates along the water pollution gradient in Gilgel Gibe watershed, Ethiopia. Water quality parameters and macroinvertebrate community attributes were assessed for samples collected from upstream sites (15 sites), urban-impacted stretches (12 sites) and wetland-affected river zones (7 sites) of the watershed during the rainy (July) and dry (February) seasons. To understand the effect of pollution on the feeding interactions, stable carbon and nitrogen isotopes were analyzed. Macroinvertebrate-based diversity indices and functional feeding type metric showed deterioration of ecological integrity at the urban-impacted sites and substantial recovery in the wetland-affected downstream sites. Omnivorous feeding behavior of macroinvertebrates was noted for the upstream sites, whereas clear trophic guilds of FFGs were suggested for the wetland-affected river zones by the stable isotope results. The results of pollution gradient analysis and feeding interactions among FFGs revealed that the urban-impacted sites showed weaker interactions when compared to upstream and wetland influenced sites. This affirms the potential importance of feeding interactions among FFGs of macroinvertebrates in water quality monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号