首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The application of potassium fertilizer by farmers is often not appropriate and causing environmental pollution. By understanding the adsorptive characteristics of potassium (K) on different soils, we can prevent excessive application of K‐fertilizer that can cause environmental impact. The Gapon exchange coefficient (KG), for exchange between K and Ca, was considered as an important factor influencing the adsorption of K. This study was conducted to compare the constant KG of five important farm soils in Taiwan. The KG and CEC were then used to predict K buffering capacity (PBC). Finally, the relationship between exchangeable K ratio (EP) and K adsorption ratio (PAR) was examined. The results show that five soils have same trends, indicating that KG decreases with increase in K saturation. The CEC and KG of Liuying (Ly) soil are both high, so that their K buffering capacity is high. The KG and CEC of Chanjing (Cj) and Sanhua (Sh) soil show moderate values. The CEC of Erling (El) soil is high, but its KG is low, so that its K buffering capacity is moderate. On the other hand, the KG of Newniaokang (Nnk) soil is high but its CEC is low, so its K buffering capacity is also moderate. The correlations between EP and PAR of five soil show linear relationship at three treatments of CaCl2 concentration. This study may provide an important clue to the fertilization management of K‐fertilizer on the different soil properties in Taiwan.  相似文献   

2.
Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (Vetiveria zizanioides L.), with or without chelating agents, in remediating lead (Pb)‐contaminated soils from actual residential sites where Pb‐based paints were used. Because the primary factor affecting Pb phytoavailability in soils is soil pH, we used two soil types widely varying in pH that have total Pb concentrations above 1500 mg kg?1 soil. Lead‐contaminated, low pH, acidic soils were collected from residential sites in Baltimore, MD and high pH, alkaline soils were collected from residential sites in San Antonio, TX. Based on the soil characterization results, two most appropriate soils (one from each city, having similar Pb levels but variable soil physico‐chemical properties) were selected for this study. Ethylenediaminetetraacetic acid (EDTA) and [S,S′]ethylenediaminedisuccinate (EDDS) were applied at 5, 10, and 15 mmol kg?1 soil. Lead uptake and translocation in vetiver was determined on day 10 after chelants addition. Plant and soil analysis show that EDTA treated soils have maximum Pb uptake and lower total soil Pb levels. Prediction models developed for exchangeable Pb show a strong correlation for total Pb accumulated in vetiver grass. Results of the sequential chemical extraction of the soils at both initial and final time‐points, indicates a significant mobilization of Pb by the two chelants from carbonate‐bound fraction to exchangeable pool. Information on physico‐chemical properties of contaminated residential soils help in predicting Pb phytoextraction and thus further help in calibrating a successful chelant‐assisted phytoremediation model.  相似文献   

3.
This paper investigates the spatial and temporal variations of runoff, erosion and rate of sediment transport on an agricultural field submitted to natural rainfalls. The site, located in the Eastern Townships (Québec, Canada), is a corn field (10000 m2) where sheetwash erosion is active. Water (Q) and sediment (Qs) discharges were measured from June to October at eight locations on the field and for ten rainfall events. Analysis of the data was carried out on an aggregate data set and on the distributed measurements in time and space. The results showed that changes in vegetation, soil compaction and crusting are critical in determining temporal variations of runoff and erosion. Until August, the increase in soil compaction reduced infiltration capacity and depression storage and generated greater runoff for a given rainfall intensity (I). Sediment transport decreased as particle detachment is less likely to occur when vegetation breaks the drop impact and the soil surface is sealed. Later in the season, we observed an increase in sediment concentration associated with the presence of burrowing insects and harvest activity, providing loose sediments to the broken down surface. Intercepts and slopes of the relationship between Q and Qs also vary during the period of measurement. High sediment availability over the soil surface in June and October gives high intercept values. The slope of the relationship is more stable but difficult to estimate for extreme events (high values of I or low Q values) where the number of sampled points are small. During a rainfall, the response of the field is dominated by the topography and drainage area. The largest amount of runoff and erosion occurred on straight and steep slopes with small drainage areas, and on converging gentle slopes with large drainage areas. Although aggregate runoff and erosion values are decreasing with drainage area, parameters of the Qs-Q relationship for different locations on the field are not statistically different. These results bear important consequences for models of sheetwash erosion on agricultural fields.  相似文献   

4.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Knowledge of rainfall characteristics is important for estimating soil erosion in arid areas. We determined basic rainfall characteristics (raindrop size distribution, intensity and kinetic energy), evaluated the erosivity of rainfall events, and established a relationship between rainfall intensity I and volume-specific kinetic energy KEvol for the Central Rift Valley area of the Ethiopian highlands. We collected raindrops on dyed filter paper and calculated KEvol and erosivity values for each rainfall event. For most rainfall intensities the median volume drop diameter (D50) was higher than expected, or reported in most studies. Rainfall intensity in the region was not high, with 8% of rain events exceeding 30 mm h-1. We calculated soil erosion from storm energy and maximum 30-min intensity for soils of different erodibility under conditions of fallow (unprotected soil), steep slope (about 9%) and no cover and management practice on the surface, and determined that 3 MJ mm ha-1 h-1 is the threshold erosivity, while erosivity of >7 MJ mm ha-1 h-1 could cause substantial erosion in all soil types in the area.
Editor Z.W. Kundzewicz; Associate Editor Q. Zhang  相似文献   

6.
Methods for predicting unit plot soil loss for the ‘Sparacia’ Sicilian (Southern Italy) site were developed using 316 simultaneous measurements of runoff and soil loss from individual bare plots varying in length from 11 to 44 m. The event unit plot soil loss was directly proportional to an erosivity index equal to (QREI30)1·47, being QREI30 the runoff ratio (QR) times the single storm erosion index (EI30). The developed relationship represents a modified version of the USLE‐M, and therefore it was named USLE‐MM. By the USLE‐MM, a constant erodibility coefficient was deduced for plots of different lengths, suggesting that in this case the calculated erodibility factor is representative of an intrinsic soil property. Testing the USLE‐M and USLE‐MM schemes for other soils and developing simple procedures for estimating the plot runoff ratio has practical importance to develop a simple method to predict soil loss from bare plots at the erosive event temporal scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The western U.S. is experiencing shifts in recharge due to climate change, and it is currently unclear how hydrologic shifts will impact geochemical weathering and stream concentration–discharge (CQ) patterns. Hydrologists often use CQ analyses to assess feedbacks between stream discharge and geochemistry, given abundant stream discharge and chemistry data. Chemostasis is commonly observed, indicating that geochemical controls, rather than changes in discharge, are shaping stream CQ patterns. However, few CQ studies investigate how geochemical reactions evolve along groundwater flowpaths before groundwater contributes to streamflow, resulting in potential omission of important CQ controls such as coupled mineral dissolution and clay precipitation and subsequent cation exchange. Here, we use field observations—including groundwater age, stream discharge, and stream and groundwater chemistry—to analyse CQ relations in the Manitou Experimental Forest in the Colorado Front Range, USA, a site where chemostasis is observed. We combine field data with laboratory analyses of whole rock and clay x-ray diffraction and soil cation-extraction experiments to investigate the role that clays play in influencing stream chemistry. We use Geochemist's Workbench to identify geochemical reactions driving stream chemistry and subsequently suggest how climate change will impact stream CQ trends. We show that as groundwater age increases, CQ slope and stream solute response are not impacted. Instead, primary mineral dissolution and subsequent clay precipitation drive strong chemostasis for silica and aluminium and enable cation exchange that buffers calcium and magnesium concentrations, leading to weak chemostatic behaviour for divalent cations. The influence of clays on stream CQ highlights the importance of delineating geochemical controls along flowpaths, as upgradient mineral dissolution and clay precipitation enable downgradient cation exchange. Our results suggest that geochemical reactions will not be impacted by future decreasing flows, and thus where chemostasis currently exists, it will continue to persist despite changes in recharge.  相似文献   

8.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

9.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Post‐wildfire runoff and erosion are major concerns in fire‐prone landscapes around the world, but these hydro‐geomorphic responses have been found to be highly variable and difficult to predict. Some variations have been observed to be associated with landscape aridity, which in turn can influence soil hydraulic properties. However, to date there has been no attempt to systematically evaluate the apparent relations between aridity and post‐wildfire runoff. In this study, five sites in a wildfire burnt area were instrumented with rainfall‐runoff plots across an aridity index (AI) gradient. Surface runoff and effective rainfall were measured over 10 months to allow investigation of short‐ (peak runoff) and longer‐term (runoff ratio) runoff characteristics over the recovery period. The results show a systematic and strong relation between aridity and post‐wildfire runoff. The average runoff ratio at the driest AI site (33.6%) was two orders of magnitude higher than at the wettest AI site (0.3%). Peak runoff also increased with AI, with up to a thousand‐fold difference observed during one event between the driest and wettest sites. The relation between AI, peak 15‐min runoff (Q15) and peak 15‐min rainfall intensity (I15) (both in mm h‐1) could be quantified by the equation: Q15 = 0.1086I15 × AI 2.691 (0.65<AI<1.80, 0<I15<45) (adjusted r2 = 0.84). The runoff ratios remained higher at drier AI sites (AI 1.24 and 1.80) throughout the monitoring period, suggesting higher AI also lengthens the window of disturbance after wildfire. The strong quantifiable link which this study has determined between AI and post‐wildfire surface runoff could greatly improve our capacity to predict the magnitude and location of hydro‐geomorphic processes such as flash floods and debris flows following wildfire, and may help explain aridity‐related patterns of soil properties in complex upland landscapes. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
含弱渗透性覆盖层饱和砂土地震液化特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对含弱渗透性覆盖层的饱和砂土地基进行一组离心机振动台试验,并采用OpenSees对试验模型进行数值模拟。通过模型试验与数值模拟结果对比讨论OpenSees对于饱和砂土地基地震液化模拟的精度;采用水平方向的Arias强度表示传入某一位置的地震动强度,并以液化时水平方向Arias强度作为该土层的抗液化强度;采用OpenSees计算不同地震动输入时饱和砂土的反应,以此检验Arias强度作为抗液化强度的准确性。结果表明,引起饱和砂土液化所需要的地震动强度随深度增加而增加;当传入的地震强度达到砂土发生液化所需要的地震强度时,该层砂土将会发生液化。  相似文献   

12.
Following the statistical analyses of long‐term rainfall‐runoff records from research basins in humid temperate latitudes, Hewlett and co‐workers extended the global challenge to disprove their findings that rainfall intensity was non‐significant. This paper responds to Hewlett's challenge as no preceding analyses have involved forested basins in a tropical cyclone‐prone area. Based on a 7 year rainfall‐runoff record, quickflow (QF), peak flow (QP) and quickflow response ratios (QRR) were regressed as dependent variables against rainfall parameters (intensity, Pi, amount, P), storm duration, D and antecedent flow, I. These data sets were categorised into total streamflow (Q) classes and stratified into three seasons, (monsoon, post‐monsoon and dry) for forested and cleared catchments. Where rainfall variable collinearity met acceptable levels, the addition of Pi to regression models including P, D, I contributed up to 9% and 66% of the respective variations in quickflow and peak flow. For the highest Q storm classes (monsoon), Pi alone accounted for up to 67% and 91% of the variation in QF and QP respectively and was the dominant influence on QP for all seasons. The very high rainfall intensities experienced in the monsoon season is a causal factor why these results differ from those of other research drainage basins. Surprisingly, Pi continued to have a significant influence on QF for dry season classes when less‐intense rainfall occurs. Further the results were similar for both catchments across all seasons. P was the dominant independent variable affecting QF above a threshold Q of 50 mm (monsoon), as rainfall contributes directly to saturation overland flow and return flow under saturated conditions. Further although QRR increased with increasing Q for each season, the regression results for that parameter were poor possibly due to the non‐linearity of the rainfall‐runoff relationship. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Prediction of concentrated flow width in ephemeral gully channels   总被引:3,自引:0,他引:3  
Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s?1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q < 0·02 m3s?1) were covered. Using field data, where measured ephemeral gully channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10?4m3s?1 < Q < 0·1 m3s?1). Comparing WQ relationships for concentrated flow channels revealed that the discharge exponent (b) varies from 0·3 for rills over 0·4 for gullies to 0·5 for rivers. This shift in b may be the result of: (i) differences in flow shear stress distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers. The proposed WQ equation for ephemeral gullies is valid for (sealed) cropland with no significant change in erosion resistance with depth. Two examples illustrate limitations of the WQ approach. In a first example, vertical erosion is hindered by a frozen subsoil. The second example relates to a typical summer situation where the soil moisture profile of an agricultural field makes the top 0·02 m five times more erodible than the underlying soil material. For both cases observed W values are larger than those predicted by the established channel width equation for concentrated flow on cropland. For the frozen soils the equation W = 3·17 Q0·368 (R2 = 0·78; n = 617) was established, but for the summer soils no equation could be established. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Runoff and sediment lost due to water erosion were recorded for 36 (1 m2) plots with varying types of vegetative cover located on sloping gypsiferous fields in the South of Madrid. 75% of the events had maximum 30‐minute intensity (I30) less than 10 mm h?1 in the period studied (1994–2005). As for the vegetative cover, maximum correlation between runoff and soil loss was found in the least protected plots (0–40% cover) during the most intense rainfall events; however, a significant positive correlation was also observed in plots with greater coverage (40–60%). If coverage exceeded 60%, rainfall erosivity declined. The average amount of sediment produced in high‐intensity events was significantly greater (approximately 7 g m?2 per I30 event >10 mm h?1) than that produced in the rest of the moderate‐intensity events (approximately 3 g m?2 per I30 event <10 mm h?1), but due to the high rate of occurrence of the latter throughout the year sediment loss during the period studied totaled 128 g m?2. By comparison, only 40 g m?2 was produced by the I30 events greater than 10 mm h?1. Even though the amount of soil lost is relatively insignificant from a quantitative standpoint, the organic matter content lost in the sediment (six times more than in the soil) is a permanent loss that threatens the development of the surface of the soil in this area when the vegetative cover is less than 40%. The soil here experiences a chronic loss of 0·02 mm annually as a consequence of frequent, moderate events, in addition to any loss produced by extraordinary events, which, though less frequent, are much more erosive. If moderate events are ignored, an important part of soil loss will be lost in the long run. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
An experimental investigation is conducted to explore the suitability of Lolium perenne L., diatomite, chalcedonite, dolomite, and limestone for the phytostabilization of Ni and Cu in contaminated soil. A controlled greenhouse study is conducted. The soil is enriched with rising dose of Cu and Ni, that is, (0, 150, 250, and 350 mg kg?1) and (0, 150, 300, and 450 mg kg?1), respectively. The phytostabilization potential of perennial ryegrass is evaluated using a bioaccumulation coefficient and translocation factor. Pseudo‐total and available metal content (0.01 M CaCl2) in soils and bioaccumulated content in plants are defined in laboratory experiments using spectrophotometry experimental technique. L. perenne is adequate in phytostabilization aided programs, simultaneously, diatomite, chalcedonite, dolomite, and limestone used as modifiers are effective in reducing the accessibility and mobility of metals in Cu‐ and Ni‐polluted soils. The finding of the present study suggests that the studied element in the roots and above‐ground parts of L. perenne differs significantly upon applying mineral‐based modifications to the soil, synchronously the effect of increasing Cu and Ni levels. Application of dolomite and limestone to the soil cause the highest percentage of the above‐ground biomass. Diatomite along with limestone cause a significant boost of Cu and Ni absorption in the roots. Limestone causes an increase in the contents of K, Na, and Ca, as well as a reduction in P in the above‐ground parts of L. perenne. Limestone and chalcedonite leads to the highest decrease in available Cu and Ni.  相似文献   

16.
17.
The decrease and degradation of the tropical forests affect not only the production of timber but also the global environment in a large scale. The ability of soil to sustain and its supply of nutrients to a growing forest are controlled by a complex of biogeochemical processes. The purpose of the present study aims to assess the degraded forest fringe areas, to promote plantations of various types and to evaluate their impacts on the soil nutrients and carbon content accumulation. The soil organic carbon (SOC) and nutrient content were evaluated and compared between plantations of mixed native species (MNS), some native tree species as Shorea robusta, Dalbergia sissoo, Dendrocalamus spp., certain agro‐forestry species and some exotic varieties. The impacts of the plantations on the SOC and the nutrients were firstly analyzed through comprehensive chemical analyses and the results were compared with the soil samples collected prior to plantation forestry. Significant changes were observed in SOC content, in nutrients, and in amounts of exchangeable cations. Soil carbon levels were highest under the MNS, Dendrocalamus and Tectona grandis stands and lowest under D. sissoo and Terminalia arjuna. Total N showed highest levels under Dendrocalamus and Pongamia pinnata and significantly higher in stands of native species; lowest total N level was observed in D. sissoo plantations. The C/N ratios of the soil varied between 9.2 and 13.5 among the exchangeable cations. Ca2+ recorded the maximum levels and Na+ showed the lowest levels.  相似文献   

18.
The USLE/RUSLE model was designed to predict long‐term (~20 years) average annual soil loss by accounting for the effects of climate, soil, topography and crops. The USLE/RUSLE model operates mathematically in two steps. The first step involves the prediction of soil loss from the ‘unit’ plot, a bare fallow area 22.1 m long on a 9% slope gradient with cultivation up and down the slope. Appropriate values of the factors accounting for slope length, gradient, crops and crop management and soil conservation practice are then used to adjust that soil loss to predict soil loss from areas that have conditions that are different from the unit plot. Replacing EI30, the USLE/RUSLE event erosivity index, by the product of the runoff ratio (QR) and EI30, can enhance the capacity of the model to predict short‐term soil loss from the unit plot if appropriate data on runoff is available. Replacing the EI30 index by another index has consequences on other factors in the model. The USLE/RUSLE soil erodibility factor cannot be used when the erosivity factor is based on QREI30. Also, the USLE/RUSLE factors for slope length, slope gradient crops and crop management, and soil conservation practice cannot be used when runoff from other than the unit plot is used to calculate QR. Here, equations are provided to convert the USLE/RUSLE factors to values suitable for use when the erosivity factor is based on the QREI30 index under these circumstances. At some geographic locations, non linear relationships exist between soil loss from bare fallow areas and the QREI30 index. The effect of this on the slope length factor associated with the QREI30 index is demonstrated using data from runoff and soil loss plots located at the Sparacia site, Sicily. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Soil water repellency (hydrophobicity) is a naturally occurring phenomenon that can be intensified by soil heating during fires. Fire‐induced water repellency, together with the loss of plant cover, is reportedly the principal source of increased surface runoff and accelerated erosion in burned soils. In this study, the surface water repellency of several soils affected by summer forest fires in northwest Spain was studied and compared with that of adjacent unburned soils. Soil water repellency was determined using the ethanol percentage test (MED). Most of the unburned soil samples exhibited water repellency that ranged from strong to very strong; only four of the unburned soil samples were non‐repellent. Water repellency in the unburned soils was significantly correlated with the organic carbon content (r = 0·64, p < 0·05). Overall, fires increased the surface water repellency in soils with previously low degrees of water repellency and caused little change in that of originally strongly hydrophobic soils. In order to examine in detail the changes in water repellency with temperature, three unburned soil samples were subjected to a controlled heating program. Water repellency increased between 25 and 220 °C, water repellency peaked between 220 and 240 °C and disappeared above 260–280 °C. Extrapolation of the results of the heating tests to field conditions suggested that the intensity of fire (temperature and time of residence) reached by most soils during fires is not too high. Based on the results, the determination of water repellency could be used as a simple test for the indirect estimation of the intensity levels reached on the soil surface during a fire. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
为了揭示湖滨带土地利用与覆被改变对土壤有机碳库及生态功能的影响,本文选取了巢湖湖滨带(北岸)9个典型样方,分析和比较了表层(0~30 cm)土壤有机碳组分特征以及相关酶的活性.结果表明,巢湖湖滨带不同采样点土壤总有机碳(TOC)含量变化范围为2.88~11.2 g/kg,平均含量为9.12 g/kg,其中原生芦苇(Phragmites australis)湿地土壤TOC含量最高(11.2 g/kg),而芦苇群落消失后形成的荒滩土壤TOC含量最低,仅为2.88 g/kg.表征湖滨带湿地缓冲性能的土壤阳离子交换量(CEC)也以原生芦苇湿地土壤为最高,并与TOC含量呈现明显正相关.湖滨带表层土壤溶解性有机碳(DOC)和易氧化有机碳(EOC)含量变化范围分别为150~370 mg/kg和1.7~5.2 g/kg,其变化幅度明显高于TOC,其中DOC含量各采样点差异最为显著.除多酚氧化酶外,次生水柳林(Homonoia riparia Lour.)表层土壤几种酶的活性较原生芦苇湿地土壤皆有所上升,特别是蔗糖酶活性增加幅度最为明显.受人类活动干扰较大的湖滨绿地公园和人工草滩土壤过氧化氢酶、脲酶和蔗糖酶酶活性普遍显著低于原生芦苇湿地.除多酚氧化酶外,土壤中几种酶活性与土壤有机碳组分EOC和DOC含量均呈现显著的正相关,其中蔗糖酶活性与DOC含量之间相关系数最高(r=0.907),其相关性均达到极显著水平.土壤溶解性有机碳和蔗糖酶可以作为表征因土地利用与覆被变化导致湖滨带湿地退化以及生态恢复效果的敏感性指标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号