首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We extend to the regional field of distances the procedure of one-station estimation of seismic moments using the mantle magnitudeM m, as introduced earlier in the case of teleseismic events. A theoretical analysis of the validity of the asymptotic expansion of normal modes in terms of surface waves, which was used in the development ofM m, upholds the validity of the algorithm for distances as short as 1.5°. This is confirmed by the analysis of a dataset of 149 GEOSCOPE records obtained at distances ranging from 1.5 to 15°, from earthquakes with moments between 1024 and 2.5×1027 dyn-cm. The performance ofM m as measured in terms of average residual with respect to published values ofM 0, and standard deviation of the residuals, is not degraded in this distance range, with respect to the teleseismic case. This indicates that the mantle magnitudeM mcan be reliably used at regional distances, notably for tsunami warning applications.  相似文献   

2.
Love waves recorded by a long-period seismograph at New Delhi (NDI) from seven earthquakes of magnitude 4.3 to 5.2 in Koyna and Bhatsa on the western coast and one earthquake in Ongole on the eastern coast of the Indian Peninsula have been used to determine the seismic moment for each of the earthquakes by waveform modeling. Transverse component of the synthetic seismogram shows that the maximum amplitude of waveform decreases with an increase of source duration. Thus for an evaluation of the seismic moment by equating the amplitude level of the observed and synthetic waveforms, we must know the source duration. The synthetic seismogram also indicates that a short source duration gives rise to a small but sharp pulse and this pulse is interpreted as anLg wave. Comparison of the observed and synthetic waveforms has been used for a simultaneous evaluation of the source duration and seismic moment. The source durations are found to vary between 2.2 and 4.4 s; for earthquakes with a magnitude range between 4.3 and 5.2 these durations are slightly higher than normal. We obtain moment (M 0) of Ongole earthquake (M L =5.1)as 1.7×1024 dyne-cm; moments of Koyna and Bhatsa earthquakes (4.3M L 5.2) on the western coast lie between 0.7×1023 and 3.6×1023 dyne-cm. Moment (M 0)-magnitude (M L ) relation logM 0=1.5M L +16.0 for the western United States region agrees as well, in general, with the results for the earthquakes in the Indian Peninsula.  相似文献   

3.
SourceparametersoftheGonghe,QinghaiProvince,China,earthquakefrominversionofdigitalbroadbandwaveformdataLI-SHENGXU(许立生)andYUN...  相似文献   

4.
Source parameters of the earthquakes of the Baikal rift system   总被引:1,自引:0,他引:1  
The dynamic parameters of the earthquake source—the seismic moment, the moment magnitude, the source radius, the stress drop, and the amplitude of displacement—are determined by the amplitude Fourier spectra of the body shear waves (S-waves) for 62 earthquakes of the Baikal rift system with the energy class of K P = 9.1–15.7. In the calculations I used the classical Brune model. The seismic moment of the earthquakes being investigated changes from 3.65 × 1011 N m to 1.35 × 1018 N m, and the radii of earthquake sources vary from 390 m to 1.84 km. The values of the drop in stress Δσ grow with an increase in the seismic moment up to 1.7 × 108 Pa. For the group of weak earthquakes (M w = 1.7–3.3), extremely low values of the drop in stress 103–104 Pa are observed. The maximum amplitude of displacement in the source amounts to 5.95 m. The empirical equations between the seismic moment and the other dynamic parameters of the source are determined. The regional dependence of the seismic moment and energy class is obtained: log M 0 ± 0.60 = 1.03K P + 3.17. The character of the relationship between the seismic moment and the corner frequency indicates that the classical scaling law of the seismic spectrum for the earthquakes in question is not fulfilled. The obtained estimates of the dynamic parameters are in satisfactory agreement with the published data concerning the analogous parameters of the other rift zones, which reflects the general regular patterns of the destruction of the lithosphere and the seismicity in the extension zones of the lithosphere.  相似文献   

5.
Measurements are taken of the mantle magnitudeM m , developed and introduced in previous papers, in the case of the 1960 Chilean and 1964 Alaskan earthquakes, by far the largest events ever recorded instrumentally. We show that theM m algorithm recovers the seismic moment of these gigantic earthquakes with an accuracy (typically 0.2 to 0.3 units of magnitude, or a factor of 1.5 to 2 on the seismic moment) comparable to that achieved on modern, digital, datasets. In particular, this study proves that the mantle magnitudeM m does not saturate for large events, as do standard magnitude scales, but rather keeps growing with seismic moment, even for the very largest earthquakes. We further prove that the algorithm can be applied in unfavorable experimental conditions, such as instruments with poor response at mantle periods, seismograms clipped due to limited recording dynamics, or even on microbarograph records of air coupled Rayleigh waves.In addition, we show that it is feasible to use acoustic-gravity air waves generated by those very largest earthquakes, to obtain an estimate of the seismic moment of the event along the general philosophy of the magnitude concept: a single-station measurement ignoring the details of the earthquake's focal mechanism and exact depth.  相似文献   

6.
Teleseismic long-period P waves from the June 20, 1978, Thessaloniki (N. Greece) earthquake (M s=6.4) were modeled in an attempt to extract information about asperities or barriers on the fault plane. The analysis is based on the inversion method of complex P waves developed by Kikuchi and Kanamori (1982). A far-field source time function with a rise time of 2 sec and a process time of 5 sec is inferred, corresponding to a source dimension of about 10 km when a rupture velocity of 2 km/sec is assumed.The source depth of this shock, estimated by matching synthetic seismograms to observations, is found to be 8 km. The sum of the seismic moments of the individual subevents amounts to 3.3×1025 dyn-cm.  相似文献   

7.
Wave-form modelling of body waves has been done to study the seismic source parameters of three earthquakes which occurred on October 21, 1964 (M b =5.9), September 26, 1966 (M b =5.8) and March 14, 1967 (M b =5.8). These events occurred in the Indochina border region where a low-angle thrust fault accommodates motion between the underthrusting Indian plate and overlying Himalaya. The focal depths of all these earthquakes are between 12–37 km. The total range in dip for the three events is 5°–20°. TheT axes are NE-SW directed whereas the strikes of the northward dipping nodal planes are generally parallel to the local structural trend. The total source durations have been found to vary between 5–6 seconds. The average values of seismic moment, fault radius and dislocation are 1.0–11.0×1025 dyne-cm, 7.7–8.4km and 9.4–47.4 cm, respectively whereas stress drop, apparent stress and strain energy are found to be 16–76 bars, 8.2–37.9 bars and 0.1–1.7×1021 ergs, respectively. These earthquakes possibly resulted due to the tension caused by the bending of the lithospheric plate into a region of former subduction which is now a zone of thrusting and crustal shortening.  相似文献   

8.
Large, shallow, thrust earthquakes in the Solomon Islands region tend to occur in closely related pairs. Two recent sequences are July 14, 1971 (MS = 7.9) and July 26, 1971 M(S = 7.9) and 14h37m, July 20, 1975 (MS = 7.9) and 19h54m, July 20, 1975 (MS = 7.7). The mechanism of these seismic doublets has important bearing on the triggering mechanism of earthquakes in subduction zones. Detailed analysis of the seismic body waves and surface waves were performed on the 1971, 1974, and 1975 doublets, providing a better understanding of: (1) the mechanics of seismic triggering, (2) the state of stress on the fault plane, and (3) the nature of subduction between the Pacific and Indian plates. The results indicate that although the geometry of the subduction zone in the Solomon Islands is complicated by the presence of several sub-plates, the slip direction of the Indian plate with respect to the Pacific plate is relatively uniform over the entire region. The large seismic moments of the 1971 sequence (1.2 · 1028 and 1.8 · 1028 dyne cm) indicate that these events directly represent the underthrusting of the Indian and Solomon plates beneath the Pacific plate. The body waves from these doublets, recorded on the WWSSN long-period seismograms, are remarkably impulsive and simple compared with those from events of comparable seismic moment in other subduction zones. In addition, the source dimensions of the body waves are 30–70 km in length, substantially smaller than the overall rupture surfaces radiating the surface waves which are 100–300 km in length. These facts suggest the existence of relatively large, isolated high-stress zones on the fault plane. This type of stress distribution is distinct from other regions which have more heterogeneous stress distribution on the fault plane, and this is proposed as the principal characteristic of this region responsible for the occurrence of the doublets and for the apparent efficiency of triggering in the Solomon trench. Prior to the 1971 sequence, similar sequences have occurred in the same area in 1919–1920 and 1945–1946. From the amount of slip (1.3 m) determined for the 1971 sequence and the apparent recurrence interval of 25 years, a seismic slip rate of 5 cm yr?1 is determined. This value is a significant portion of the convergence rate between the Indian and Pacific plates indicating that the plate motion here is taken up largely by seismic slip.  相似文献   

9.
Spectral parameters have been estimated for 214 Petatlan aftershocks recorded at stations between Petatlan and Mexico City and between Petatlan and Acapulco. The spectral parameters were used to obtain empirical relations for the estimation of seismic moment from coda length and fromM L . Stress drops, using Brune's model, were calculated for these aftershocks. Six events with large stress drop are located within a previously suggested asperity, and seven more suggest a boundary zone at the intersection of the Petatlan and Zihuatanejo aftershock rupture volumes. Stress drops increase with increasing seismic moment up to 1020 dyne-cm but appear to be constant at greater moment values. The peak horizontal velocity times distance of aftershocks recorded near the coast and between the coast and Mexico City (30 to 270 km away), scales linearly with seismic moment, and predicts well the peak horizontal values of large (M s 7.0) coastal thrust events recorded on rock sites at Mexico City. Peak horizontal velocity is a straightforward measurement, thus this relation allows us to evaluate expected ground motion between the Pacific coast and Mexico City from the seismic moment of subduction related earthquakes along the coast.  相似文献   

10.
To better understand the mechanics of subduction and the process of breaking a mature seismic gap, we study seismic activity along the western New Britain subduction segment (147°E–151°E, 4°S–8°S) through earthquakes withm b 5.0 in the outer-rise, the upper area of subducting slab and at intermediate depths to 250 km, from January 1964 to December 1990. The segment last broke fully in large earthquakes of December, 28, 1945 (M s =7.9) and May 6, 1947 (M s =7.7.), and its higher seismic potential has been recognized byMcCann et al., (1979). Recently the segment broke partially in two smaller events of February, 8, 1987 (M s =7.4) and October 16, 1987 (M s =7.4), leaving still unbroken areas.We observe from focal mechanisms that the outer-rise along the whole segment was under pronounced compression from the late 60's to at least October 1987 (with exception of the tensional earthquake of December 11, 1985), signifying the mature stage of the earthquake cycle. Simultaneously the slab at intermediate depths below 40 km was under tension before the earthquake of October 16, 1987. That event, with a smooth rupture lasting 32 sec, rupture velocity of 2.0 km/sec, extent of approximately 70 km and moment of 1.2×1027 dyne-cm, did not change significantly the compressive state of stress in the outer-rise of that segment. The earthquake did not fill the gap completely and this segment is still capable of rupturing either in an earthquake which would fill the gap between the 1987 and 1971 events, or in a larger magnitude event (M s =7.7–7.9), comparable to earthquakes observed in that segment in 1906, 1945 and 1947.  相似文献   

11.
Persian territory, which is dividable into major seismotectonic provinces, always suffers from damages of moderate and large earthquakes from ancient era to modern time. Therefore, temporal prediction of earthquake occurrence in this kind of area is an important topic. For this purpose, 628 moderate-large (5.5 ≤MS≤ 8.2) earthquakes occurred in Persia during the period from 400 B.C. to 2015 C.E. were used. Considering the magnitudes of events preceding main shocks and the annual seismic moment release in seismic source areas in the provinces, we calibrated equations predicting inter-event time of occurrence of moderate and large earthquakes (MW>5.5) in Iran. In each source area, inter-event times between moderate and large shocks with magnitudes equal to or larger than a certain cut-off magnitude (MW5.5) were calculated. The inter-event times between the earthquakes were used to compute the relationships using multiple regression technique. Calculated relationships express the basic idea of the time predictable model predicting the occurrence time of the future main shock in a certain seismogen area. However, despite of unavoidable scatter in observations and uncertainties in the results, occurrence times of main shocks during the next years and decades in some source areas in Iran were determined.  相似文献   

12.
TheM s =6.9 Gonghe, China, earthquake of April 26, 1990 is the largest earthquake to have been documented historically as well as recorded instrumentally in the northeastern Qinghai-Xizang (Tibetan) plateau. The source process of this earthquake and the tectonic stress field in the northeastern Qinghai-Xizang plateau are investigated using geodetic and seismic data. The leveling data are used to invert the focal mechanism, the shape of the slipped region and the slip distribution on the fault plane. It is obtained through inversion of the leveling data that this earthquake was caused by a mainly reverse dip-slipping buried fault with strike 102°, dip 46° to SSW, rake 86° and a seismic moment of 9,4×1018 Nm. The stress drop, strain and energy released for this earthquake are estimated to be 4.9 MPa, 7.4×10–5 and 7.0×1014 J, respectively. The slip distributes in a region slightly deep from NWW to SEE, with two nuclei, i.e., knots with highly concentrated slip, located in a shallower depth in the NWW and a deeper depth in the SEE, respectively.Broadband body waves data recorded by the China Digital Seismograph Network (CDSN) for the Gonghe earthquake are used to retrieve the source process of the earthquakes. It is found through moment-tensor inversion that theM s =6.9 main shock is a complex rupture process dominated by shear faulting with scalar seismic moment of the best double-couple of 9.4×1018 Nm, which is identical to the seismic moment determined from leveling data. The moment rate tensor functions reveal that this earthquake consists of three consecutive events. The first event, with a scalar seismic moment of 4.7×1018 Nm, occurred between 0–12 s, and has a focal mechanism similar to that inverted from leveling data. The second event, with a smaller seismic moment of 2.1×1018 Nm, occurred between 12–31 s, and has a variable focal mechanism. The third event, with a sealar seismic moment of 2.5×1018 Nm, occurred between 31–41 s, and has a focal mechanism similar to that inverted from leveling data. The strike of the 1990 Gonghe earthquake, and the significantly reverse dip-slip with minor left-lateral strike-slip motion suggest that the pressure axis of the tectonic stress field in the northeastern Qinghai-Xizang plateau is close to horizontal and oriented NNE to SSW, consistent with the relative collision motion between the Indian and Eurasian plates. The predominant thrust mechanism and the complexity in the tempo-spatial rupture process of the Gonghe earthquake, as revealed by the geodetic and seismic data, is generally consistent with the overall distribution of isoseismals, aftershock seismicity and the geometry of intersecting faults structure in the Gonghe basin of the northeastern Qinghai-Xizang plateau.Contribution No. 96 B0006 Institute of Geophysics, State Seismological Bureau, Beijing, China.  相似文献   

13.
M TSU : Recovering Seismic Moments from Tsunameter Records   总被引:1,自引:0,他引:1  
We define a new magnitude scale, MTSU, allowing the quantification of the seismic moment M0 of an earthquake based on recordings of its tsunami in the far field by ocean-bottom pressure sensors (``tsunameters') deployed in ocean basins, far from continental or island shores which are known to affect profoundly and in a nonlinear fashion the amplitude of the tsunami wave. The formula for MTSU, MTSU = log10 M0 − 20 = log10 X (ω) + CDTSU + CSTSU + C0, where X (ω) is the spectral amplitude of the tsunami, CDTSU a distance correction and CSTSU a source correction, is directly adapted from the mantle magnitude Mm introduced for seismic surface waves by Okal and Talandier. Like Mm, its corrections are fully justified theoretically based on the representation of a tsunami wave as a branch of the Earth's normal modes. Even the locking constant C0, which may depend on the nature of the recording (surface amplitude of the tsunami or overpressure at the ocean floor) and its units, is predicted theoretically. MTSU combines the power of a theoretically developed algorithm, with the robustness of a magnitude measurement that does not take into account such parameters as focal geometry and exact depth, which may not be available under operational conditions in the framework of tsunami warning. We verify the performance of the concept on simulations of the great 1946 Aleutian tsunami at two virtual gauges, and then apply the algorithm to 24 records of 7 tsunamis at DART tsunameters during the years 1994–2003. We find that MTSU generally recovers the seismic moment M0 within 0.2 logarithmic units, even under unfavorable conditions such as excessive focal depth and refraction of the tsunami wave around continental masses. Finally, we apply the algorithm to the JASON satellite trace obtained over the Bay of Bengal during the 2004 Sumatra tsunami, after transforming the trace into a time series through a simple ad hoc procedure. Results are surprisingly good, with most estimates of the moment being over 1029 dyn-cm, and thus identifying the source as an exceptionally large earthquake.  相似文献   

14.
Calibration of magnitude scales for earthquakes of the Mediterranean   总被引:1,自引:1,他引:0  
In order to provide the tools for uniform size determination for Mediterranean earthquakes over the last 50-year period of instrumental seismology, we have regressed the magnitude determinations for 220 earthquakes of the European-Mediterranean region over the 1977–1991 period, reported by three international centres, 11 national and regional networks and 101 individual stations and observatories, using seismic moments from the Harvard CMTs. We calibrate M(M0) regression curves for the magnitude scales commonly used for Mediterranean earthquakes (ML, MWA, mb, MS, MLH, MLV, MD, M); we also calibrate static corrections or specific regressions for individual observatories and we verify the reliability of the reports of different organizations and observatories. Our analysis shows that the teleseismic magnitudes (mb, MS) computed by international centers (ISC, NEIC) provide good measures of earthquake size, with low standard deviations (0.17–0.23), allowing one to regress stable regional calibrations with respect to the seismic moment and to correct systematic biases such as the hypocentral depth for MS and the radiation pattern for mb; while mb is commonly reputed to be an inadequate measure of earthquake size, we find that the ISC mb is still today the most precise measure to use to regress MW and M0 for earthquakes of the European-Mediterranean region; few individual observatories report teleseismic magnitudes requiring specific dynamic calibrations (BJI, MOS). Regional surface-wave magnitudes (MLV, MLH) reported in Eastern Europe generally provide reliable measures of earthquake size, with standard deviations often in the 0.25–0.35 range; the introduction of a small (±0.1–0.2) static station correction is sometimes required. While the Richter magnitude ML is the measure of earthquake size most commonly reported in the press whenever an earthquake strikes, we find that ML has not been computed in the European-Mediterranean in the last 15 years; the reported local magnitudes MWA and ML do not conform to the Richter formula and are of poor quality and little use, with few exceptions requiring ad hoc calibrations similar to the MS regression (EMSC, ATH). The duration magnitude MD used by most seismic networks confirms that its use requires accurate station calibrations and should be restricted only to events with low seismic moments.  相似文献   

15.
The December 26, 2004 Sumatra–Andaman Island earthquake, which ruptured the Sunda Trench subduction zone, is one of the three largest earthquakes to occur since global monitoring began in the 1890s. Its seismic moment was M 0 = 1.00 × 1023–1.15 × 1023 Nm, corresponding to a moment-magnitude of M w = 9.3. The rupture propagated from south to north, with the southerly part of fault rupturing at a speed of 2.8 km/s. Rupture propagation appears to have slowed in the northern section, possibly to ∼2.1 km/s, although published estimates have considerable scatter. The average slip is ∼5 m along a shallowly dipping (8°), N31°W striking thrust fault. The majority of slip and moment release appears to have been concentrated in the southern part of the rupture zone, where slip locally exceeded 30 m. Stress loading from this earthquake caused the section of the plate boundary immediately to the south to rupture in a second, somewhat smaller earthquake. This second earthquake occurred on March 28, 2005 and had a moment-magnitude of M w = 8.5.  相似文献   

16.
The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes (M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of − 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = − 0.4, when compared to the regional networks operating in West Bohemia (M c > 0.0). In the course of this work, the main temporal features (frequency–magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg–Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.  相似文献   

17.
The April 20, 2013 Lushan earthquake which occurred in Sichuan, China had only moderate thrust. However, the computed seismic moments (M 0) for the Lushan earthquake calculated by several institutions differ significantly from 0.4 × 1019 to 1.69 × 1019 Nm, up to four times difference. We evaluate ten computed M 0s by using normal mode observations from superconducting gravimeters in Mainland China. We compute synthetic normal modes on the basis of moment tensor solutions and fit them to the observed normal modes. Comparison of our results indicates that M 0 is the main cause for some large differences between observations and synthetics. We suggest that a moment magnitude of M w6.6, corresponding to a M 0 of 0.97–1.08 × 1019 Nm, characterizes the size and strength of the seismic source of the Lushan earthquake.  相似文献   

18.
内蒙古中西部地区中小地震矩震级研究   总被引:1,自引:1,他引:0  
刘芳  张帆  李彬  娜热 《中国地震》2017,33(2):301-310
基于S震相"S窗"内的波形信号识别、品质因子Q(f)和22个台站场地响应,利用2009~2016年3月内蒙古中西部地区地震的波形资料,反演了182次中小地震的震源波谱参数,得到这些小震的零频幅值及其拐角频率,据此计算了这些地震的地震矩M_0、矩震级M_W和应力降Δσ。利用回归分析方法得到了近震震级与矩震级、矩震级与应力降的关系式。分析表明,近震震级与矩震级、矩震级与应力降呈线性关系。可见,将矩震级纳入地震的快报与正式目录中,可以丰富地震观测报告内容,更好地为地震应急和地震科研服务。  相似文献   

19.
This paper proposes a synthesis of thestudies made in terms of source parametersevaluation for the last earthquakes oflocal magnitude greater than 4.5 whichoccurred in or nearby France during thelast five years. Focal mechanisms andseismic moments have been computed for thethree most important events, largely feltby the population: St Paul de Fenouillet(February 18th 1996, ML 5.6),Annecy-Epagny (July 15th 1996, ML5.2) and St-Béat (October 4th1999, ML 4.8). These focal mechanismshave been obtained either by regionalmoment tensor inversion or from firstmotion polarities and are compared withcomplementary studies made on theseearthquakes. In addition, for the otherearthquakes of local magnitude greater than4.5 which occurred nearby French borderssince the beginning of the recording ofbroadband data by the RéNaSS(Réseau National de SurveillanceSismique, French Seismological Survey) inmid–1995, several magnitude calculationsconcerning the following earthquakes arepresented: Pamplona (25/2/1996, ML4.7), Aoste (31/03/1996, ML 4.6),Imperia (24/2/1997, ML 4.5),Barcelonette (31/10/1997, ML 4.8),Pamplona (27/10/1998, ML 4.9), andBonifacio (26/4/2000, ML 4.5). Localmagnitudes are usually higher thanthe Mb magnitudes reported by the PDE(Preliminary Determination of Epicenters),while the extension of the Msz scale toregional magnitudes and the Mw magnitudesderived from seismic moments give smallervalues. The relative importance of thevarious earthquakes in terms of surfacewave magnitude or seismic moment does notalways agree with that implied by localmagnitudes.  相似文献   

20.
Seismic strain and b value are used to quantify seismic potential in the Zagros region (Iran). Small b values (0.69 and 0.69) are related to large seismic moment rates (9.96×1017 and 4.12×1017) in southern zones of the Zagros, indicating more frequent large earthquakes. Medium to large b values (0.72 and 0.92) are related to small seismic moment rates (2.94×1016 and 6.80×1016) in middle zones of the Zagros, indicating less frequent large earthquakes. Small b value (0.64) is related to medium seismic moment rate (1.38×1017) in middle to northern zone of the Zagros, indicating frequent large earthquakes. Large b value (0.87) is related to large seismic moment rate (2.29×1017) in northwestern zone, indicating more frequent large earthquakes. Recurrence intervals of large earthquakes (M > 6) are short in southern (10 and 14 years) and northwestern (13 years) zones, while the recurrence intervals are long in the middle (46 and 114 years) and middle to northern (25 years) zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号