首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过在波浪水槽中进行一系列物理模型实验, 研究珊瑚礁礁坪宽度变化对珊瑚礁海岸附近波浪传播变形及礁坪上波浪增水的影响。物理实验采用理想化的珊瑚礁模型, 测试了3种礁坪宽度下的一系列不规则波工况。实验结果分析表明: 波浪沿礁传播过程中, 短波持续衰减; 低频长波波高沿礁逐渐增大, 直到海岸线附近达到最大; 随着礁坪宽度的增加, 海岸线附近的短波波高呈下降趋势, 低频长波波高的变化规律不显著; 礁坪上的波浪增水受礁坪宽度变化的影响不明显; 通过对海岸线附近的波浪进行频谱分析发现, 礁坪上低频长波的运动存在着一阶共振模式, 且共振放大效应强度受礁坪水深、入射波峰周期和礁坪宽度共同影响。  相似文献   

2.
Influences of topographic variations of the offshore fringing reef on the harbor oscillations excited by incident Nwaves with different amplitudes and waveform types are studied for the first time. Both the propagation of the Nwaves over the reef and the subsequently-induced harbor oscillations are simulated by a Boussinesq-type numerical model, FUNWAVE-TVD. The present study concentrates on revealing the influences of the plane reef-face slope,the reef-face profile shape and the lagoon width on the maximum runup, the wave energy distribution and the total wave energy within the harbor. It shows that both the wave energy distribution uniformity and the total wave energy gradually increase with decreasing reef-face slope. The profile shape of the reef face suffering leading-elevation Nwaves(LEN waves) has a negligible impact on the wave energy distribution uniformity, while for leading-depression N-waves(LDN waves), the latter gradually decreases with the mean water depth over the reef face. The total wave energy always first increases and then decreases with the mean water depth over the reef face. In general, the total wave energy first sharply decreases and then slightly increases with the lagoon width, regardless of the reef-face width and the incident waveform type. The maximum runup subjected to the LEN waves decreases monotonously with the lagoon width. However, for the LDN waves, its changing trend with the lagoon width relies on the incident wave amplitude.  相似文献   

3.
本文采用圆柱体阵列来模拟珊瑚礁面的大糙率,通过波浪水槽实验研究礁面糙率对孤立波传播变形及岸滩爬高的影响.结果表明,粗糙礁面的存在显著削弱了礁坪上孤立波的首峰和礁后岸滩反射造成的次峰,同时降低了波浪在珊瑚礁面的传播速度;垂直于岸线方向沿礁相对波高随着入射波增大而减小,随着礁坪水深的增大而增大,粗糙礁面上波高沿礁的衰减更为...  相似文献   

4.
为了探究岛屿周围珊瑚礁在抵御海啸灾害中的作用,采用激波捕捉类Boussinesq模型FUNWAVE-TVD,对孤立波在理想化三维岛礁地形上的传播及爬坡开展了现场尺度的平面二维数值模拟,分析了入射波高、礁坪水深、礁坪宽度、礁前斜坡坡度、礁后斜坡坡度、珊瑚礁糙率对岛屿四周孤立波爬高分布的影响。结果表明,珊瑚礁的存在总体上可有效降低岛屿四周孤立波的最大爬坡高度;入射波高、礁坪水深、礁坪宽度、珊瑚礁糙率是影响珊瑚岛礁四周孤立波爬坡分布的主要因素,岛礁四周最大爬坡高度会随入射波高和礁坪水深的增大、礁坪宽度和珊瑚礁糙率的减小而不断增大;当礁坪水深增大到一定程度时,珊瑚礁主要会对岛屿背浪面的爬高失去影响,而当礁坪宽度和珊瑚礁糙率减小至一定程度时,会出现岛礁四周最大爬高高于无珊瑚礁时爬高的现象;礁后斜坡的变缓会使岛礁周围的最大爬高有所减小,而礁前斜坡坡度对珊瑚岛礁周围的最大爬高几乎没有影响。  相似文献   

5.
卢坤  屈科  姚宇  孙唯一  蒋昌波 《海洋通报》2021,40(2):143-151
基于非静压单相流模型NHWAVE建立了高精度二维数值波浪水槽,采用日本2011年实测真实海啸波型系统研究了海啸波在岛礁上传播变形的规律,并且分析了波高、礁坪淹没水深和礁前斜坡坡度等因素对孤立波和真实海啸传播变形的影响。结果表明,相比孤立波,类海啸波的波长明显大于孤立波波长,在测点处引起的水面变化持续时间更长,同等波高情况下真实海啸波型比孤立波能够携带更多的能量,与岛礁的相互作用也更为复杂,在礁坪上形成的淹没水深约为孤立波的两倍。礁前斜坡坡度和礁坪淹没水深均对类海啸波的反射和透射系数有显著影响。随着礁前斜坡坡度的增加,反射系数和透射系数均逐渐增加。随着礁坪淹没水深的增加,反射系数逐渐减小,而透射系数逐渐增大。但是,反射系数和透射系数均随着入射波高的增加而逐渐减小。  相似文献   

6.
Liu  Wei-jie  Shao  Ke-qi  Ning  Yue  Zhao  Xi-zeng 《中国海洋工程》2020,34(2):162-171
Wave hydrodynamics over fringing reefs is largely controlled by the reef surface roughness and hydrodynamic forcing. It is believed that climate change will result in a net increase in the water depth over the reef flat, a degrading of the surface roughness of coral reefs and changes in extreme incident wave heights. For an accurate assessment of how climate change affects the safety of reef-fringed coasts, a numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts was carried out based on a Boussinesq wave model,FUNWAVE-TVD. Validated with experimental data, the present model shows reasonable prediction of irregular wave evolution and run-up height over fringing reefs. Numerical experiments were then implemented based on the anticipated effects of climate change and carried out to investigate the effects of sea level rise, degrading of the reef surface roughness and increase of extreme incident wave height on the irregular wave run-up height over the backreef beach respectively. Variations of run-up components(i.e., spectral characteristics of run-up and mean water level) were examined specifically and discussed to better understand the influencing mechanism of each climate change-related effect on the run-up.  相似文献   

7.
An analytical solution is proposed to predict the wave set-up over permeable reef flat based on porous flow model and momentum conservation. A laboratory experiment is carried out to verify the analytical solution. Good agreement is obtained by comparing the analytical results and the experimental data. Both the analytical results and the experimental data show the wave setup increases with the increase of the incident wave height and the decrease of the submergence water depth. The influences of the porous properties of the coral reef on wave set-up are discussed based on the analytical solution and experiment results. The wave set-up on the reef flat is found to decrease with the increasing particle size of porous media layer. The increase of the porosity and the height of porous media layer can lead to significant reduction in the wave set-up on the reef flat.  相似文献   

8.
南沙群岛珊瑚岛礁众多,大多数岛礁具有向海坡陡峭、外礁坪比较平缓的特征。将南沙群岛岛礁的迎浪向地形概化为陡坡和缓坡组成的双斜坡,采用FUNWAVE-TVD模式数值模拟概化地形上的波浪,根据模拟的破碎波高分析其拍岸浪特征。对拍岸浪数值模拟结果进行比较分析,向海坡的坡度对拍岸浪影响不大,外礁坪上拍岸浪高随地形坡度增大而略有增大;向海坡和外礁坪交界位置(即坡折点)水深对拍岸浪有比较明显的影响,拍岸浪高随坡折点水深增大而减小;拍岸浪高随入射波高和波周期增大而增大。利用大量的拍岸浪数值模拟数据对国内外5种统计模型进行检验,并且基于拍岸浪数值模拟数据建立了3种南沙群岛岛礁拍岸浪统计模型,计算结果显示这些模型适用性较好。  相似文献   

9.
The main purpose of this article is to systematically investigate the influence of offshore fringing reef topography on the infragravity-period harbor oscillations. The infragravity (IG) period oscillations inside an elongated harbor induced by normally-incident bichromatic wave groups are simulated using a fully nonlinear Boussinesq model, FUNWAVE 2.0. Based on an IG wave decomposition method, effects of plane reef-face slopes, reef-face profile shapes and the existence of reef ridge on bound and free IG waves and their relative components inside the harbor are comprehensively studied. For the given harbor and reef ridge, the range of the reef-face slopes and the various profile shapes studied in this paper, results show that the amplitude of the free IG waves inside the harbor increases with the increasing of the reef-face slope; while the bound IG waves inside the harbor seem insensitive to it. The effects of the profile shapes on the IG period waves inside the harbor are closely related to the width of the reef face. The existence of the reef ridge can relieve the bound IG waves to some extent when the incident short wave amplitudes are relatively large, while its effects on the free IG waves are negligible.  相似文献   

10.
珊瑚岸礁破碎带附近波浪演化实验研究   总被引:4,自引:1,他引:3  
通过波浪水槽实验对珊瑚岸礁破碎带附近波浪演变规律开展研究,实验采用了概化的岸礁模型,测试了4种礁坪水深、4种礁前斜坡坡度和一系列入射波高的组合工况。对破碎带宽度和破碎带附近波浪的入射、反射、透射以及能量耗散进行了测量分析,透射波的计算考虑了礁坪上高次谐波的影响。结果表明:礁坪水深和入射深水波高的比值(即礁坪相对水深)是影响岸礁破碎带附近波浪演化的关键参数,而礁前斜坡坡度的影响在本文测量的范围内可以忽略不计。破碎带宽度与礁坪上浅水波波长为同一数量级,并与礁坪相对水深成反比;透射系数随礁坪相对水深的增大呈线性增长,而反射系数的变化却无类似规律;岸礁能够削弱超过50%入射波能,礁坪相对水深越小,波浪破碎造成的能量耗散越大。  相似文献   

11.
The wave-induced setup and circulation in a two dimensional horizontal (2DH) reef-lagoon-channel system is investigated by a non-hydrostatic model. The simulated results agree well with observations from the laboratory experiments, revealing that the model is valid in simulating wave transformation and currents over reefs. The effects of incident wave height, period, and reef flat water depth on the mean sea level and wave-driven currents are examined. Results show that the distributions of mean sea level and current velocities on the reef flat adjacent to the channel vary significantly from those in the area close to the side walls. From the wave averaged current field, an obvious alongshore flux flowing from the reef flat to the channel is captured. The flux from the reef flat composes the second source of the offshore rip current, while the first source is from the lagoon. A detailed momentum balance analysis shows that the alongshore current is mainly induced by the pressure gradient between the reef flat and the channel. In the lagoon, the momentum balances are between the pressure and radiation stress gradient, which drives flow towards the channel. Along the channel, the offshore current is mainly driven by the pressure gradient.  相似文献   

12.
贾美军  姚宇  陈松贵  郭辉群 《海洋工程》2020,38(6):53-59,123
通过测试一系列不规则波工况研究了防浪建筑物存在下珊瑚礁海岸附近短波、低频长波和增水的变化规律,并对比了防浪建筑物的不同位置情况。分析结果表明:波浪在沿礁传播过程中,短波波高沿礁坪持续衰减,低频长波波高沿礁坪逐渐增大,波浪增水则沿礁坪基本保持不变;海岸附近短波随着防浪建筑物与礁缘距离的变大而减小,低频长波则在防浪建筑物处于礁坪后部时达到最大,防浪建筑物位置的变化对于礁坪波浪增水的影响可以忽略。通过理论分析证明了珊瑚礁地形上低频长波是由于群波破碎造成的破碎点移动而产生的;当特定波况作用于特定位置的防浪建筑物时,低频长波在礁坪上会发生一阶共振效应导致其能量在海岸附近达到最大值。  相似文献   

13.
This is the second of three papers on the modelling of various types of surf zone phenomena. In the first paper the general model was described and it was applied to study cross-shore motion of regular waves in the surf zone. In this paper, part II, we consider the cross-shore motion of wave groups and irregular waves with emphasis on shoaling, breaking and runup as well as the generation of surf beats. These phenomena are investigated numerically by using a time-domain Boussinesq type model, which resolves the primary wave motion as well as the long waves. As compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics and wave breaking is modelled by using a roller concept for spilling breakers. The swash zone is included by incorporating a moving shoreline boundary condition and radiation of short and long period waves from the offshore boundary is allowed by the use of absorbing sponge layers. Mutual interaction between short waves and long waves is inherent in the model. This allows, for example, for a general exchange of energy between triads rather than a simple one-way forcing of bound waves and for a substantial modification of bore celerities in the swash zone due to the presence of long waves. The model study is based mainly on incident bichromatic wave groups considering a range of mean frequencies, group frequencies, modulation rates, sea bed slopes and surf similarity parameters. Additionally, two cases of incident irregular waves are studied. The model results presented include transformation of surface elevations during shoaling, breaking and runup and the resulting shoreline oscillations. The low frequency motion induced by the primary-wave groups is determined at the shoreline and outside the surf zone by low-pass filtering and subsequent division into incident bound and free components and reflected free components. The model results are compared with laboratory experiments from the literature and the agreement is generally found to be very good. Finally the paper includes special details from the breaker model: time and space trajectories of surface rollers revealing the breakpoint oscillation and the speed of bores; envelopes of low-pass filtered radiation stress and surface elevation; sensitivity of surf beat to group frequency, modulation rate and bottom slope is investigated. Part III of this work (Sørensen et al., 1998) presents nearshore circulations induced by the breaking of unidirectional and multi-directional waves.  相似文献   

14.
Many low-lying tropical and sub-tropical atolls fringed by coral reefs are susceptible to coastal inundation during extreme wave events. Previous studies have shown that the infragravity (IG) wave is the dominant component of shoreline run-up compared to the sea and swell (SS) wave and the wave-induced setup. To better understand both the SS and IG wave dynamics over a fringing reef with various morphologies, a series of laboratory experiments were conducted in a wave flume based on an idealized fringing reef profile. The shoreline responses of waves to different reef morphologies with/without the reef crest, the lagoon and the reef surface roughness were examined. IG wave resonance on the reef flat was identified by a spectral analysis of the shoreline wave records. Subsequently, a numerical model based on the Boussinesq equations was validated by the experimental data. The model was then applied to investigate the impacts of varying reef morphologic features (fore-reef slope, reef-crest width, lagoon width, and reef roughness coefficient) on the shoreline wave motions.  相似文献   

15.
This paper presents the results of a parametric study of irregular wave run-up over fringing reefs using the shock-capturing Boussinesq wave model Funwave-TVD to better understand the role of fringing reefs in the mitigation of wave-driven flooding. Laboratory experiments were newly performed with a typical fringing reef profile and typical hydrodynamic conditions to validate the model. Experimental data shows irregular wave run-ups are dominated by the low-frequency motions and confirms the run-up resonant phenomenon over the back-reef slope, which has been revealed in previous numerical studies. It is demonstrated that irregular wave evolution and run-up over fringing reefs are reasonably reproduced by the present model with a proper grid size. However, the infragravity run-up height and highest 2% run-up height over the back-reef slope are under-predicted due to the underestimation of the infragravity wave height over the reef flat. The validated model was then utilized to model irregular wave transformations and run-ups under different conditions. Through a series of numerical experiments, the effects of key hydrodynamic and reef geometry parameters, including the reef flat width, water depth over the reef flat, fore-reef slope angle and back-reef slope angle, on the irregular wave run-up were investigated. Variations of spectral components of irregular wave run-ups were examined to better understand the physical process underlying the effect of each parameter.  相似文献   

16.
斜向和多向不规则波在斜坡堤上的平均越浪量的试验研究   总被引:4,自引:1,他引:3  
通过三维物理模型试验研究了在斜坡堤上斜向和多向不规则波在非破碎条件下的平均越浪量与波浪参数及堤参数的关系.着重考察了波浪以小角度(0°~30°)斜向入射时平均越浪量的变化情况,肯定了多向波的越浪量在这一范围内有所谓“小角度斜向增加”的现象,但否定了单向波也具有这一现象.在考察波浪的方向分布影响时发现波浪斜向入射时多向波的越浪量往往要比单向波的大.比较了已有的相关研究成果,给出了适用于混凝土护面和扭工字块体护面斜坡堤上斜向和多向不规则波的平均越浪量的估算公式.  相似文献   

17.
It has been well observed that a reef crest (ridge) may be present at the reef edge, but so far very few published studies focusing on the effects of such reef-crest on the wave dynamics over fringing reefs. To understand the role of a reef-crest configuration in determining breaking-wave induced setup over the reef flat, a series of experiments were carried out in a wave flume using an idealized fringing reef model with a reef crest. Experimental results were reported for a trapezoidal reef crest with five reef-crest widths under a series of monochromatic waves. Also examined was the reef without a reef crest. Data analysis shows that larger energy dissipation associated with smaller surfzone width around the reef edge occurred with a wider reef crest. The maximum wave-induced setup on the reef flat in the presence of the reef crest was significantly larger than that without, and it also increased with increasing reef-crest width. The reef-crest submergence was found to be a primary parameter controlling the magnitude of wave setup on the reef flat provided that the reef crest was sufficient wide. An alternative semi-analytical 1DH model based on the balance of cross-shore momentum was proposed. The model was validated by present laboratory data as well as three existing 1DH laboratory studies. Comparing with other two representative semi-analytical models in the literature showed that the proposed model was capable of better reproducing the maximum wave-induced setup on the reef flat for a variety of reef profiles with/without a reef crest, different reef-crest water levels, as well as both monochromatic and spectral waves. The model parameter was physically related to the two characteristic lengths in the surf zone and its value was dependent on the fore-reef slope as well as the presence of a reef crest. The 1DH model was also satisfactorily applied to a fringing reef in field conditions where the effects of fore-reef friction and back-reef lagoon were not important.  相似文献   

18.
Numerical simulations using a full-nonlinear BIM (Boundary Integral Method) potential-theory wave model are carried out to study the internal velocity and acceleration fields of an solitary wave overturning on a reef with vertical face (submerged breakwater) and their relation to breaker type. The simulations make it clear that the jet size normalized by the incident wave height is uniquely governed by the crown height of the reef, while the jet shape is similar and independent of the size. Further, they reveal that the overall internal kinematics of overturning waves is clearly related to the jet size. As the jet size increases and the breaker type changes from spilling to plunging, the kinematics thus become increasingly different from those of steady waves. Water particles with the greatest velocities or accelerations within the wave converge towards the jet. After the breaking, both of the velocities and accelerations almost simultaneously reach extreme values near locations beneath the jet. Some of the extreme values are closely related to the breaker type and can be uniquely determined by substituting the breaker type index into the regression equations suggested here.  相似文献   

19.
探索珊瑚礁与海滩地貌之间动力地貌联系是认识珊瑚礁海岸变化的重要一环.本文以雷州半岛徐闻西落港珊瑚礁海岸为研究对象,应用RTK-GPS和无人船开展岸滩剖面和近岸水下地形的测量、结合海滩沉积物分析,基于FUNWAVE-TVD数值模型模拟并分析不同珊瑚礁地形地貌条件下波浪动力传播过程.结果显示,研究区珊瑚礁水下地形是影响礁后...  相似文献   

20.
《Coastal Engineering》2005,52(4):353-387
Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves.This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 17–55] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes—reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号