首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuff work especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.  相似文献   

2.
Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses and the mooring characteristics of TLP under random waves are studied by using a self-developed program. Results are verified by the 1:40 scaling factor model test conducted in the State Key Laboratory of Ocean Engineering at Shanghai JiaoTong University. The mean, range, and standard deviation of the numerical simulation and model test are compared. The influences of different sea states and wave approach angles on the dynamic response and tendon tension of the mooring system are investigated. The acceleration in the center and corner of the deck is forecasted.  相似文献   

3.
1 .IntroductionWhenatankerisberthedormooredtoanoceanplatform ,whichisusuallyinopenseas,thetankerwillsufferforcesgeneratedbywaves ,windandcurrent.Inmostofthepreviousstudies ,thein fluenceofcurrentorthecombinedwaveandcurrentwasconsideredtobethemainobject.Ins…  相似文献   

4.
Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas(FLNG) system is investigated.Hydrodynamic modeling of a turret-moored FLNG system,in consideration of the coupling effects of the vessel and its mooring lines,has been addressed in details.Based on the boundary element method,a 3-D panel model of the FLNG vessel and the related free water surface model are established,and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated.A systematic model test program consisting of the white noise wave test,offset test and irregular wave test combined with current and wind,etc.is performed to verify the numerical model.Owing to the depth limit of the water basin,the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system.The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests.The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.  相似文献   

5.
Failure of net cage and mooring system is of great concern to the marine aquaculture industry. To avoid the structure failure in storm waves and current during typhoon events, net cage can submerge below the water surface in practice. A submersible net cage and mooring system is analyzed by numerical simulation and physical model test. The numerical model is established based on the lumped mass method and principle of rigid body kinematics. A series of physical model tests are conducted to validate the numerical model of single net cage and grid mooring system in waves and current. Numerical results correspond well with data obtained from physical model test. The results indicate that when net cage is submerged below the water surface, the deformation of net cage in waves can be improved significantly, and the tension force on the anchor line, bridle line and grid line will decrease significantly. However, the tension force on the buoy line in the submergence condition is larger than that in the floating condition. Different relative submergence ratios are also considered in our numerical simulation, and a relative submergence ratio equal to 0.1 is suggested here. The tension reduction ratio (56%) for the four-cage system is larger than that for the single-cage (52%) and double-cage systems (44%).  相似文献   

6.
In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.  相似文献   

7.
《Applied Ocean Research》2005,27(4-5):187-208
In the present paper, the performance of a moored floating breakwater under the action of normal incident waves is investigated in the frequency domain. A three-dimensional hydrodynamic model of the floating body is coupled with a static and dynamic model of the mooring lines, using an iterative procedure. The stiffness coefficients of the mooring lines in six degrees of freedom of the floating breakwater are derived based on the differential changes of mooring lines' tensions caused by the static motions of the floating body. The model of the moored floating system is compared with experimental and numerical results of other investigators. An extensive parametric study is performed to investigate the effect of different configurations (length of mooring lines and draft) on the performance of the moored floating breakwater. The draft of the floating breakwater is changed through the appropriate modification of mooring lines' length. Numerical results demonstrate the effects of the wave characteristics and mooring lines' conditions (slack-taut). The existence of ‘optimum’ configuration of the moored floating breakwater in terms of wave elevation coefficients and mooring lines' forces is clearly demonstrated, through a decision framework.  相似文献   

8.
LI  Wen-long 《中国海洋工程》2003,17(4):541-550
The floating oil storage system has been proposed as a new facility for Strategic Petroleum Reserve (SPR) in China. Mooring is one of the key technologies to ensure the safety, reliability, and performance of the oil storage system. This paper describes the concept, analysis, design and reliability of the mooring system. For mooring system design of these oil vessels, analysis is essential of the behavior of the vessel in connection with mooring facilities of nonlinear resilience. A nonlinear mathematical model for analyzing a moored vessel is established and solved. Some results of numerical simulations are presented. Assessment of the safety regarding the mooring system in terms of failure probability is carried out. Another simulation model for calculating the failure probability of the mooring system is proposed. The design parameters that have an influence on the characteristics of the failure probability have been identified. The simulation results show that the mooring system has an annual reliab  相似文献   

9.
基于秘鲁钱凯港的防波堤三维整体模型试验结果,研究了涌浪绕射、透射联合作用对港内波况的影响.分析了不同波向、不同谱峰周期的入射波条件下港内不同功能区的波况分布规律,并对比分析了具有不同周期的入射波对港内不同区域波高的影响,兼顾分析了波向的影响.结果表明,在涌浪作用下,受透射、绕射影响,不同入射波条件下港内比波高分布规律相...  相似文献   

10.
At present the position keeping of ocean going vessels, offshore service vessels, etc., is performed by mooring systems to resist external forces under severe environments consisting of wave, current and wind. A variety of mooring systems are employed depending on the shape, principal dimensions, etc., of the vessels in addition to the surrounding conditions of the water areas. Ocean going ships are moored to the shore structures through a multiple system of moorings. The determination of the forces in the cables is essential for the design of moorings and the berthing structures. However, the ships engaged for offshore operations are moored by the mooring cables, spread around the ships with the other ends of the moorings anchored to the sea bed. In these cases, the required number and length of cables can be arrived for a given ship of known dimensions and environmental conditions. With the increased overall dimensions of the vessels, it is necessary to conduct a study on enhancing the accuracy in estimating the mooring system performance. Hence, the present work is mainly intended to carry out model tests to investigate the behaviour of moored ships that are subjected to wave and current loadings. These model experiments were conducted in a 30 m × 2 m × 1 m wave-current flume at the Ocean Engineering Centre, Indian Institute of Technology, Madras.  相似文献   

11.
The simple, yet versatile numerical technique particularly suitable for investigating the problem of the wave attenuation by moored floating breakwater was recently developed by the author. In order to verift the theory, nearly full scale model tests were conducted in a large wave tank (3.6 m wide × 4.5 m high × 106 m long). Both random waves and monochromatic waves were used to compare the results. A breakwater with a rectangular cross-section and a hydrodynamically shaped «three-cycle cylinderå breakwater were tested. Incident wave spectra were successfully decomposed from the multi-reflected sea spectra. Frequency response functions of transmitted wave, sway, heave and roll motions of the breakwater as well as mooring forces were all experimentally determined and compared with the theory. Generally, excellent agreements between the theory, the random wave tests and the monochromatic wave tests were obtained for the hydrodynamically shaped breakwater. Except near the modal frequencies of body motion generally good agreement between theory and experiment was obtained for the rectangular breakwater. Near the modal frequencies, the body motion was damped by the flow separation at the sharp corners of the rectangular breakwater. Generation of higher harmonics in wave, body motion and mooring forces was observed and measured, but was generally small. The slow drift oscillation and its effects on the performance of the spring moored breakwaters were also small. From the comaprisons of the small scale test and the large scale tests, it was found that the scale effects were negligibly small on the performance of the spring-moored breakwaters.  相似文献   

12.
This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of top frames, netting, mooring lines, bottom frames, and floats. A series of scaled physical model tests in regular waves are conducted to verify the numerical model. The comparison results show that the simulated and the experimental results agree well under the wave conditions, and the maximum pitch of the bottom frame with two orientations is about 12o. The motion process of the whole cage system in the wave can be described with the computer visualized technology. Then, the mooring line tensions and the motion of the bottom frame with three kinds of weight are calculated under different wave conditions. According to the numerical results, the differences in mooring line tensions of flatfish cages with three weight modes are indistinct. The maximum pitch of the bottom frame decreases with the increase of the bottom weight.  相似文献   

13.
Developments in the study of wave forces and construction techniques in deep water by the offshore oil industry have increased the use of marine terminals at deep water locations. A thorough understanding of moored ship dynamics when subjected to waves, wind and current combined with the use of flexible mooring lines would help to design berthing terminals for exposed areas. In this paper, the three dimensional problem of wave interactions with a barge moored to a single point is dealt with, based on the finite element method. The effect of flexibility of the mooring line and the point of mooring on the response of the barge as well as the mooring line tension is investigated. The paper compares the numerical results with model tests carried out on a barge moored to a fixed support under regular and random waves in head sea. The effect of stiffness of the mooring line on the barge response for different mooring points is discussed, which would be useful for the designers. The effect of viscous damping is also considered. The analytical results are in good agreement with the experimental results in both regular and random waves.  相似文献   

14.
—Most terminals for tankers are piers and sea islands,while other types include single pointmoorings and multiple-buoy moorings.The LNG and LPG carrier moored to the jetty is a very commonterminal for transfer of gas in open seas.It is important to estimate the motions and line tensions of theLNG carrier when it moors to a jetty in metocean environment.Normally,the motions of the LNG carrierwould be restricted by the loading arm,which is connected to LNG carrier's manifold.An example of125,000m~3 LNG carrier moored to a jetty exposed to a set of environment conditions is given.Amathematical model which is based on the equations of motion in the time domain is used to the analysisof LNG moored to an offshore jetty exposed to waves,swell,wind and current.By means of a time do-main computer program TERMSIM computations are carried out to determine and optimize the lay-outand/or orientation of the jetty and mooring gear in terms of forces in mooring lines and fenders and theenvelope of motions of the loadi  相似文献   

15.
单铁兵 《海洋工程》2020,38(5):1-11
系泊系统是半潜式支持平台抵抗恶劣海洋环境作用、限制平台偏移、实现海上定位的重要设备,辐射状多点系泊是常用的布置方式。针对该平台系泊系统开展了设计方法和分析流程研究,阐述了系泊系统配置设计,包括系泊缆的数量、抛出长度、单根系泊缆的刚度、直径、破断负荷、定位锚的型式、最大抓力等;系泊系统的布置设计,包括系泊缆之间的水平夹角、系泊绞车、导缆器、定位锚的位置等;同时归纳风载荷、流载荷以及波浪慢漂载荷的常用估算方法;总结适用于该类平台系泊系统设计的规范要求。将上述方法和流程应用于某型半潜式支持平台系泊系统的开发和设计,采用系泊定位分析程序MIMOSA对该系统的定位能力进行分析,研究了系泊缆形状、夹角等参数随张力的变化特征,同时系泊缆按照船级社的规范要求进行衡准,反复调整和优化系泊系统的配置和布置方式,直至系泊系统满足要求,最终设计出较合适的系泊系统。相关方法、流程和结论为实际工程项目提供重要的设计思路。  相似文献   

16.
This paper attempts to provide a better understanding of the hydrodynamic behaviour of a floating multi-resonant oscillating column wave energy device which combines the concept of a floating breakwater and a wave energy device. Experiments were conducted on a 1:20 scale model of the floating wave energy device moored by six mooring lines to study the dynamics of the device under regular waves for various scopes. The effect of non-dimensionalized wave frequency parameter on the motion response and mooring force are reported and discussed in detail in this paper.  相似文献   

17.
Breakwaters are often built in coastal waters to facilitate navigation and recreation, both inside and outside regions of the breakwater. This requires that the reflection and transmission characteristics of the structure be both minimized at the same time. This is achieved by a design that will allow dissipation of wave energy by multiple reflection. Such structures will need the knowledge of these characteristics in their design. Model tests were performed on a shallow water breakwater concept of this type to determine the reflection and transmission coefficients. The concept of the breakwater was to reduce both the reflection and transmission of waves. It was found that the breakwater design was effective at certain wave characteristics. Nondimensional loads and local pressures on the breakwater panels are also reported which will facilitate the structural design of such breakwaters.  相似文献   

18.
19.
随着智能化研究成为当今科技发展的热点,结合智能优化算法的浮体系泊系统自动化设计成为一个将现代方法应用于传统工程领域并提高设计效率的研究对象。针对浮体的系泊系统,以悬链线式系泊方式为研究对象,分析得出了系泊缆与不同选材参数之间的规律,建立系泊系统自动化设计方法,选用遗传算法作为算法基础,实现方案的智能优选,进行了有效的探索研究;开发了系泊系统自动化设计的自主程序,完成了典型的单根系泊缆的单点系泊系统以及多段组成风分布式系泊系统的研究,验证了方法的可行性,为系泊系统的自动化设计这一技术问题提供了解决方法与工程的应用手段。  相似文献   

20.
Hybrid model testing technique is widely used in verification of a deepwater floating structure and its mooring system,but the design of the truncated mooring systems which can reproduce both static and dynamic response same as the full-depth mooring system is still a big challenge,especially for the mooting systems with large truncation.A Cell-Tress Spar operated in 1500 m water depth is verified in a wave basin with 4 m water depth.A large truncation factor arises even though a small model scale 1:100 is adopted.Computer program modules for analyzing the static and frequency domain dynamic response of mooting line are combined with multi-objective genetic algorithm NSGA-II to optimize the truncared mooting system.Considering the asymmetry of layout of mooring hnes,two different truncated mooring systems are respectively designed for both directions in which the restoring forces of the.mooting system are quite,different.Not only the static characteristics of the mooting systems are calibrated,but also the dynamic responses of the single truncated mooting line are evaluated through time domain numerical simulation and model tests.The model test results of 100-year storm in the GOM are reconstructed and extrapolated to a full depth.It is found that the experimental and numerical resuits of Spar wave frequency motion agree well,and the dynamic responses of the full-depth mooring lines are better reproduced,but the low frequency surge motion is overestimated due to the smaller mooring-induced damping.It is a feasible method adopting different truncated mooring systems for different directions in which the restoring force characteristics are quite different and cannot be simulated by one truncated mooring system.Hybrid verification of a deepwater platform in wave basin with shallow water depth is still feasible if the truncated mooring systems are properly designed,and numerical extrapolation is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号