首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.  相似文献   

2.
Economically consistent long-term scenarios for air pollutant emissions   总被引:1,自引:0,他引:1  
Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We find that the default method of scenario construction, whereby emissions factors converge to similar values in different regions, does not yield pollution concentrations consistent with historical experience. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant concentrations as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve consistency between projected PM2.5 and economic income among world regions through time; consistency for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. Reference case pollutant emissions described here were used to construct the RCP4.5 Representative Concentration Pathway climate policy scenario.  相似文献   

3.
A two-dimensional global climate model is used to assessthe climatic changes associated with the new IPCC SRES emissions scenarios and to determine which kind of changes in total solar irradiance and volcanic perturbations could mask the projected anthropogenic global warming associated to the SRES scenarios. Our results suggest that only extremely unlikely changes in total solar irradiance and/or volcanic eruptions would be able to overcome the simulated anthropogenic global warming over the century. Nevertheless, in the critical interval of the next two decades the externally-driven natural climate variability might possibly confuse the debate about temperature trends and impede detection of the anthropogenic climate change signal.  相似文献   

4.
Two integrated assessment models, one for climate change on a global scale (IMAGE 2) and another for the regional analysis of the impacts of acidifying deposition (RAINS), have been linked to assess the impacts of reducing sulphur emission on ecosystems in Asia and Europe. While such reductions have the beneficial effect of reducing the deposition of acidifying compounds and thus the exceedance of critical loads of ecosystems, they also reduce the global level of sulphate aerosols and thus enhance the impact of increased emissions of greenhouse gases, and consequently increase the risk of potential vegetation changes. The calculations indicate that about 70% of the ecosystems in Asia would be affected by either acid deposition or climate change in the year 2100 (up from 20% in 1990) for both sulphur emission scenarios (controlled and uncontrolled), whereas in Europe the impacted area would remain at a level of about 50%, with a dip early next century. More generally, the effects of reducing sulphur emissions and thus enhancing climate change would about balance for the Asian region, whereas for Europe the desirable impact of sulphur emission reductions would greatly outweigh its undesirable effects.  相似文献   

5.
利用政府间气候变化委员会(IPCC)第4次评估报告提供的13个新一代气候系统模式的模拟结果,分析了不同情景下(高排放SRESA2、中等排放SRESA1B和低排放SRESB1)重庆地区21世纪的气候变化。结果表明:21世纪重庆气候总体有显著变暖、变湿趋势,年平均气温变暖趋势为每100年2.3~4.2℃,年降水增加趋势为每100年5.9%~8.8%。冬季变暖最明显,春季降水增加较显著、秋季减少较明显。在A2、A1B和B1情景下,21世纪后期气温分别比常年偏高3.68、3.28、2.26℃,年降水分别比常年偏多5.24%、5.77%和3.43%。  相似文献   

6.
Integrated assessment models (IAMs) have commonly been used to understand the relationship between the economy, the earth’s climate system and climate impacts. We compare the IPCC simulations of CO2 concentration, radiative forcing, and global mean temperature changes associated with five SRES ‘marker’ emissions scenarios with the responses of three IAMs—DICE, FUND and PAGE—to these same emission scenarios. We also compare differences in simulated temperature increase resulting from moving from a high to a low emissions scenario. These IAMs offer a range of climate outcomes, some of which are inconsistent with those of IPCC, due to differing treatments of the carbon cycle and of the temperature response to radiative forcing. In particular, in FUND temperatures up until 2100 are relatively similar for the four emissions scenarios, and temperature reductions upon switching to lower emissions scenarios are small. PAGE incorporates strong carbon cycle feedbacks, leading to higher CO2 concentrations in the twenty-second century than other models. Such IAMs are frequently applied to determine ‘optimal’ climate policy in a cost–benefit approach. Models such as FUND which show smaller temperature responses to reducing emissions than IPCC simulations on comparable timescales will underestimate the benefits of emission reductions and hence the calculated ‘optimal’ level of investment in mitigation.  相似文献   

7.
A hydrologic model was driven by the climate projected by 11 GCMs under two emissions scenarios (the higher emission SRES A2 and the lower emission SRES B1) to investigate whether the projected hydrologic changes by 2071–2100 have a high statistical confidence, and to determine the confidence level that the A2 and B1 emissions scenarios produce differing impacts. There are highly significant average temperature increases by 2071–2100 of 3.7°C under A2 and 2.4°C under B1; July increases are 5°C for A2 and 3°C for B1. Two high confidence hydrologic impacts are increasing winter streamflow and decreasing late spring and summer flow. Less snow at the end of winter is a confident projection, as is earlier arrival of the annual flow volume, which has important implications on California water management. The two emissions pathways show some differing impacts with high confidence: the degree of warming expected, the amount of decline in summer low flows, the shift to earlier streamflow timing, and the decline in end-of-winter snow pack, with more extreme impacts under higher emissions in all cases. This indicates that future emissions scenarios play a significant role in the degree of impacts to water resources in California.  相似文献   

8.
Ian Castles and David Henderson have criticized IPCC’s Special Report on Emissions Scenarios (SRES) (IPCC: 2000, Special Report on Emissions Scenarios, Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 595 pp. http://www.grida.no/climate/ipcc/emission/index.htm) for using market exchange rates (MER) instead of purchasing power parities (PPP), when converting regional GDP into a common denominator. The consequence is that poor countries generally appear to be poorer than they actually are. An overstated income gap between the rich and poor countries in the base year gives rise to projections of too high economic growth in the poor countries, because the scenarios are constructed with the aim of reducing the income gap. Castles and Henderson claim that overstated economic growth means that greenhouse gas emissions are overstated as well. However, because closure of the emission-intensity gap between the rich and the poor parts of the world is another important driving force in the scenarios, we argue that the use of MER in the SRES scenarios has not caused an overestimation of the global emission growth because, as far as global emissions are concerned, the overstated income gap is effectively neutralized by the overstated emission-intensity gap.  相似文献   

9.
Predictions of future temperature increases depend critically on the projections of future greenhouse gas emissions. Yet there is a vigorous debate about how these projections should be undertaken. This paper explores a range of methodological issues surrounding projecting greenhouse emissions over the next century. It points out that understanding future emissions requires a framework that deals with the sources of economic growth and allows for endogenous structural change. It also explores the role of convergence assumptions and the “Castles and Henderson Critique” of the Special Report on Emission Scenarios (SRES) regarding use of Market Exchange Rates (MERs) rather than Purchasing Power Parity exchange rates (PPPs) to benchmark income differentials in the world economy. In the G-Cubed multi-country model, we show that emission projections based on convergence assumptions defined in MER terms, are 40% higher by 2100 than emissions generated using a PPP comparison of income differentials between economies. We support the argument presented by Castles and Henderson, that the use of MERs in the SRES represents a serious analytical error. It is not clear what this means for the SRES projections because the SRES is not transparent in its assumptions. In the G-Cubed model, the error leads to considerably higher emissions projections.  相似文献   

10.
Long-term emissions scenarios have served as the primary basis for assessing future climate change and response strategies. Therefore, it is important to regularly reassess the relevance of emissions scenarios in light of changing global circumstances and compare them with long-term developments to determine if they are still plausible, considering the newest insights. Four scenario series, SA90, IS92, SRES, and RCP/SSP, were central in the scenario-based literature informing the five Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC) and the sixth assessment cycle. Here we analyze the historical trends of carbon dioxide (CO2) emissions from fossil fuel combustion and industry and emissions drivers between 1960 and 2017. We then compare the emission scenario series with historical trends for the period 1990–2017/2018. The results show that historical trends are quite consistent with medium scenarios in each series. As a result, they can be regarded as valid inputs for past and future analyses of climate change and impacts. Global CO2 emissions 1960–2018 (and 1990–2018) comprised six (and three) overall subperiods of emissions growth significantly higher and lower than average. Historically, CO2 emissions (in absolute numbers and growth rate) are tightly coupled with primary energy and indirectly with GDP. Global emissions generally followed a medium-high pathway, captured by “middle-of-the-road” scenario narratives in the earlier series, and by combinations of “global-sustainability” and “middle-of-the-road” narratives in the most recent series (SRES and SSP-baselines). Historical non-OECD trends were best captured by “rapid-growth” and “regional-competition” scenarios, while OECD trends were close to regional-sustainability and global-sustainability scenarios. Areas where the emissions scenarios captured the historical trends less well, are renewable and nuclear primary energy supply. The fact that the actual historical development is consistent with rapid-growth narratives in the non-OECD regions might have important implications for future greenhouse gas emissions and associated climatic change.  相似文献   

11.
5个IPCC AR4全球气候模式对东北三省降水模拟与预估   总被引:3,自引:0,他引:3  
利用IPCC AR4中5个全球气候模式数据集和中国东北三省162个站降水实测资料,评估5个全球气候模式和多模式集合平均对中国东北三省降水的模拟能力,并对SRES B1、A1B和A2三种排放情景东北三省未来降水变化进行预估。结果表明:全球气候模式能较好再现东北三省降水的月变化,但存在系统性湿偏差;多模式集合平均能较好模拟东北三省年降水量的空间分布,但模拟中心偏北,强度略强,模式对东北三省夏季降水的模拟效果优于冬季降水;预估结果表明,三种排放情景下21世纪中前期和末期东北三省降水均将增多,21世纪末期增幅高于21世纪中前期,冬季增幅高于其他季节;就排放情景而言,SRES A1B和A2排放情景增幅相当,高于B1排放情景增幅;不同排放情景东北三省降水量增率分布呈较一致变化,A2排放情景下,增幅最显著的辽宁环渤海地区年降水量在21世纪中前期将增加7%以上,21世纪末期将增加16%。  相似文献   

12.
21世纪重庆最大连续5d降水的预估分析   总被引:3,自引:0,他引:3       下载免费PDF全文
 利用用于IPCC第四次评估报告的全球气候模式产品,验证其对重庆地区最大连续5 d降水(R5d)的模拟能力的基础上,对模拟能力较好的模式进行组合,预估温室气体排放高(A2)、中(A1B)、低(B1)3种情景下未来21世纪重庆地区R5d的变化。与目前(1980-1999年)气候相比,不同情景下21世纪重庆地区R5d均可能增加,尤其是21世纪后期相比21世纪前、中期增加更为显著。  相似文献   

13.
The greenhouse gas emissions scenarios published by the IPCC in the Special Report on Emission Scenarios (SRES) continue to serve as a primary basis for assessing future climate change and possible response strategies. These scenarios were developed between 1996 and 1999 and sufficient time has now passed to make it worth examining their consistency with more recent data and projections. The comparison performed in this paper includes population, GDP, energy use, and emissions of CO2, non-CO2 gases and sulfur. We find the SRES scenarios to be largely consistent with historical data for the 1990–2000 period and with recent projections. Exceptions to this general observation include (1) in the long-term, relatively high population growth assumptions; in some regions, particularly in the A2 scenario; (2) in the medium-term, relatively high economic growth assumptions in the LAM (Latin America, Africa and Middle East) region in the A1 scenario; (3) in the short-term, CO2 emissions projections in A1 that are somewhat higher than the range of current scenarios; and (4) substantially higher sulfur emissions in some scenarios than in historical data and recent projections. In conclusion, given the relatively small inconsistencies for use as global scenarios there seems to be no immediate need for a large-scale IPCC-led update of the SRES scenarios that is solely based on the SRES scenario performance vis-a-vis data for the 1990–2000 period and/or more recent projections. Based on reported findings, individual research teams could make, and in some cases already have made, useful updates of the scenarios.  相似文献   

14.
Abstract

This article investigates future greenhouse gas emission scenarios for Russia's electricity sector, a topic of importance since Russia's ratification of the Kyoto Protocol in November 2004. Eleven scenarios are constructed to the year 2020 considering economic and technological details in both the demand and supply sides of the sector. The scenarios are based upon a thorough review of the different factors controlling carbon dioxide emissions, including potential economic growth, changes in energy efficiency and technological development, and that Russia may export large amounts of natural gas to European and Asian markets. The most likely scenario is that Russia will double industrial output over the next 10 years, increase energy efficiency in the demand sector, will remain consistent to the goals of the Energy Strategy 2020 and will implement more efficient technology in the electricity supply sector. Consequently, carbon dioxide emissions will still be 102 million tonnes below 1990 levels in 2010, representing a significant source for emission reduction credits available to be sold on international markets or transferred to the next crediting period.  相似文献   

15.
Today Africa is a small emitter, but it has a large and faster-than-average growing population and per capita income that could drive future energy demand and, if unconstrained, emissions. This paper uses a multi-model comparison to characterize the potential future energy development for Continental and Sub-Saharan Africa under different assumptions about population and income. Our results suggest that population and economic growth rates will strongly influence Africa’s future energy use and emissions. We show that affluence is only one face of the medal and the range of future emissions is also contingent on technological and political factors. Higher energy intensity improvements occur when Africa grows faster. In contrast, climate intensity varies less with economic growth and it is mostly driven by climate policy. African emissions could account for between 5 % and 20 % of global emissions, with Sub-Saharan Africa contributing between 4 % and 10 % of world emissions in 2100. In all scenarios considered, affluence levels remain low until the middle of the century, suggesting that the population could remain dependent on traditional bioenergy to meet most residential energy needs. Although the share of electricity in final energy, electric capacity and electricity use per capita all rise with income, even by mid-century they do not reach levels observed in developed countries today.  相似文献   

16.
利用5个全球气候模式和中国东北地区162个站点地面温度实测资料,评估全球气候模式和多模式集合平均对中国东北地区地面温度的模拟能力,并对SRES B1、A1B和A2排放情景下,中国东北地区未来地面温度变化进行预估。结果表明:全球气候模式能够较好地再现了东北地区地面温度的年变化和空间分布特征,但存在系统性冷偏差,模式对夏季地面温度模拟偏低1.16 ℃,优于冬季。预估结果表明,3种排放情景下21世纪中期和末期东北地区地面温度均将升高,末期增幅高于中期,冬季增幅高于其他季节, SRES A2排放情景下增幅最大,B1排放情景下最小;增温幅度自南向北逐渐增大,增温最显著地区位于黑龙江小兴安岭;21世纪末期3种情景下中国东北地区年平均地面温度将分别升高2.39 ℃(SRES B1)、3.62 ℃(SRES A1B)和4.43 ℃(SRES A2)。  相似文献   

17.
The RCP2.6 emission and concentration pathway is representative of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 2°C. These scenarios form the low end of the scenario literature in terms of emissions and radiative forcing. They often show negative emissions from energy use in the second half of the 21st century. The RCP2.6 scenario is shown to be technically feasible in the IMAGE integrated assessment modeling framework from a medium emission baseline scenario, assuming full participation of all countries. Cumulative emissions of greenhouse gases from 2010 to 2100 need to be reduced by 70% compared to a baseline scenario, requiring substantial changes in energy use and emissions of non-CO2 gases. These measures (specifically the use of bio-energy and reforestation measures) also have clear consequences for global land use. Based on the RCP2.6 scenario, recommendations for further research on low emission scenarios have been formulated. These include the response of the climate system to a radiative forcing peak, the ability of society to achieve the required emission reduction rates given political and social inertia and the possibilities to further reduce emissions of non-CO2 gases.  相似文献   

18.
Climate policies must consider radiative forcing from Kyoto greenhouse gases, as well as other forcing constituents, such as aerosols and tropospheric ozone that result from air pollutants. Non-Kyoto forcing constituents contribute negative, as well as positive forcing, and overall increases in total forcing result in increases in global average temperature. Non-Kyoto forcing modeling is a relatively new component of climate management scenarios. This paper describes and assesses current non-Kyoto radiative forcing modeling within five integrated assessment models. The study finds negative forcing from aerosols masking (offsetting) approximately 25 % of positive forcing in the near-term in reference non-climate policy projections. However, masking is projected to decline rapidly to 5–10 % by 2100 with increasing Kyoto emissions and assumed reductions in air pollution—with the later declining to as much as 50 % and 80 % below today’s levels by 2050 and 2100 respectively. Together they imply declining importance of non-Kyoto forcing over time. There are however significant uncertainties and large differences across models in projected non-Kyoto emissions and forcing. A look into the modeling reveals differences in base conditions, relationships between Kyoto and non-Kyoto emissions, pollution control assumptions, and other fundamental modeling. In addition, under climate policy scenarios, we find air pollution and resulting non-Kyoto forcing reduced to levels below those produced by air pollution policies alone—e.g., China sulfur emissions fall an additional 45–85 % by 2050. None of the models actively manage non-Kyoto forcing for climate implications. Nonetheless, non-Kyoto forcing may be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited.  相似文献   

19.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

20.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC_CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC_CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC_CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC_CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号