首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
“Hard” carbon-based Pennsylvania anthracite was deformed in the steady-state at high temperatures and pressures in a series of coaxial and simple shear experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T 700°C, with average bireflectance values (%) increasing from 1.68 at 700°C to 6.36 at 900°C. Romin is lowest and bireflectance is highest in zones of high strain (e.g., kink bands) at all temperatures.In anthracite samples deformed in simple shear over the 600°–900°C range at 1.0 GPa, average Romax (%) values increase up to 11.9, whereas average bireflectance (%) values increase up to 10.7. Bireflectance increases with increasing shear strain and locally exceeds 12.5%. Graphitization occurs in several anthracite sample deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain is the dominant factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 1600°C required for graphitization of other hard carbons in earlier hydrostatic heating experiments at 0.5 GPa pressure.  相似文献   

2.
The orientation of the optical indicating surface of vitrinite in reflected light has been determined following deformation at 350 and 500°C, confining pressures of 500 and 800 MPa and a strain rate of 10−5 s−1. High temperature and large strain have facilitated reorientation of the indicating surface, increase in anisotropy (bireflectance) and an increase in maximum vitrinite reflectance. In a specimen deformed at 500°C and 23% axial strain the maximum vitrinite reflectance has been reoriented more than 70° from close to parallel to σ1 in the undeformed state to perpendicular to σ1 following deformation. Orientation of the optical indicating surface of some of the deformed specimens suggests the orientation of the maximum reflectance is a composite product of the original orientation of the indicating surface and an orientation produced during deformation.  相似文献   

3.
Shear deformation of hot pressed plagioclase–olivine aggregates was studied in the presence and absence of mineral reaction. Experiments were performed at 900 °C, 1500 MPa, and a constant shear strain rate of 5×10−5 s−1 in a solid medium apparatus. Whether the mineral reaction between plagioclase and olivine takes place or not is controlled by choosing the appropriate plagioclase composition; labradorite (An60) does not react, anorthite (An92) does. Labradorite–olivine aggregates deformed without reaction are very strong and show strain hardening throughout the experiment. Syndeformational reaction between olivine and anorthite causes a pronounced strain weakening. The reaction produces fine-grained opx–cpx–spinel aggregates, which accommodate a large fraction of the finite strain. Deformation and reaction are localised within a 0.5-mm-wide sample. Three representative samples were analysed for their fabric anisotropy R* and shape-preferred orientation α* (fabric angle with the shear plane) using the autocorrelation function (ACF). Fabric anisotropy can be calibrated to quantify strain variations across the sheared samples. In the deformed and reacted anorthite–olivine aggregate, there is a strong correlation between reaction progress and strain; regions of large shear strain correspond to regions of maximum reaction progress. Within the sample, the derived strain rate variations range up to almost one order of magnitude.  相似文献   

4.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

5.
Aggregates composed of olivine and magnesiowüstite have been deformed to large strains at high pressure and temperature to investigate stress and strain partitioning, phase segregation and possible localization of deformation in a polyphase material. Samples with 20 vol.% of natural olivine and 80 vol.% of (Mg0.7Fe0.3)O were synthesized and deformed in a gas-medium torsion apparatus at temperatures of 1127 °C and 1250 °C, a confining pressure of 300 MPa and constant angular displacement rates equivalent to constant shear strain rates of 1–3.3 × 10− 4 s− 1. The samples deformed homogeneously to total shear strains of up to γ  15. During constant strain rate measurements the flow stress remained approximately stable at 1250 °C while it progressively decreased after the initial yield stress at the lower temperature. Mechanical data, microstructures and textures indicate that both phases were deforming in the dislocation creep regime. The weaker component, magnesiowüstite, controlled the rheological behavior of the bulk material and accommodated most of the strain. Deformation and dynamic recrystallization lead to grain refinement and to textures that were not previously observed in pure magnesiowüstite and may have developed due to the presence of the second phase. At 1127 °C, olivine grains behaved as semi-rigid inclusions rotating in a viscous matrix. At 1250 °C, some olivine grains remained largely undeformed while deformation and recrystallization of other grains oriented for a-slip on (010) resulted in a weak foliation and a texture typical for pure dry olivine aggregates. Both a-slip and c-slip on (010) were activated in olivine even though the nominal stresses were up to 2 orders of magnitude lower than those needed to activate these slip systems in pure olivine at the same conditions.  相似文献   

6.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   

7.
剪切作用对有机质光学各向异性体发育的控制   总被引:1,自引:0,他引:1  
湘西泸阳县白沙镇西不远处发育一条含大量凝析油的超浅成脆韧性剪切带。该剪切带中发育了一种光学各向异性体,Ro,min=0.34-0.81%;Ro,med=1.01-1.84%;Ro,max=2.52-3.20%,最大双反射率可达87%。研究表明,光学各向异性椭球体的R0,max轴的分布与S面理一致,表明了剪切应力对有机质光学各向异性的发育具有一定的影响和控制。   相似文献   

8.
The effect of coal composition, particularly the organic fraction, upon gas sorption has been investigated for Bowen Basin and Sydney Basin, Australia coals. Maceral composition influences on gas retention and release were investigated using isorank pairs of hand-picked bright and dull coal in the rank range of high volatile bituminous (0.78% Ro max) to anthracite (3.01% Ro max). Adsorption isotherm results of dry coals indicated that Langmuir volume (VL) for bright and dull coal types followed discrete, second-order polynomial trends with increasing rank. Bright coals had a minimum VL at 1.72% Ro max and dull coals had a minimum VL at 1.17% Ro max. At low rank, VL was greater in bright coal by about 10 cm3/g, but as rank increased, the bright and dull trends converged and crossed at 1.65% Ro max. At ranks higher than 1.65% Ro max, both bright and dull coals followed similar trends. These competing trends mean that the importance of maceral composition on VL varies according to rank. In high volatile bituminous coals, increases in vitrinite content are associated with increases in adsorption capacity. At ranks higher than medium to low volatile bituminous, changes in maceral composition may exert relatively little influence on adsorption capacity. The Langmuir pressure (PL) showed a strong relationship of decreasing PL with increasing rank, which was not related to coal type. It is suggested that the observed trend is related to a decrease in the heterogeneity of the pore surfaces, and subsequent increased coverage by the adsorbate, as coal rank increases. Desorption rate studies on crushed samples show that dull coals desorb more rapidly than bright coals and that desorption rate is also a function of rank. Coals of lower rank have higher effective diffusivities. Mineral matter was found to have no influence on desorption rate of these finely crushed samples. The evolution of the coal pore structure with changing rank is implicated in diffusion rate differences.  相似文献   

9.
Finite-element folds of similar geometry   总被引:3,自引:0,他引:3  
Model folds of similar geometry have been produced by using the finite-element method and the constitutive relations of a layer of wet quartzite embedded in a marble matrix with an initially sinusoidal configuration and a 10° limb dip. The power law for steady-state flow of Yule Marble (Heard and Raleigh, 1972) is used for the matrix and our new law for Canyon Creek quartzite deformed in the presence of water is used for the layer. The equiv- alent viscosity of the wet quartzite is highly temperature-sensitive, giving rise to a strong temperature dependence of the quartzite: marble viscosity ratio which, at a strain rate of 10−14/sec, drops from 543 at 200° to 0.13 at 800°C. At 375°C (ηq/ηm = 10), concentric folds develop at all strains to 80% natural shortening and stress, finite strain and viscosity distributions are somewhat similar to those found previously. Raising the temperature to 550° C (ηq/ηm = 1), at any stage of prior amplification, causes the folds to flatten with increasing strain, accompanied by attenuation of limbs and thickening of hinges, leading to folds with similar geometries and isoclinal folds at extreme strains. The effects are more pronounced at higher temperatures and at 700° C (ηq/ηm = 0.3) limb attenuation is so severe as to give rise to unrealistic geometries. At temperatures below about 600° C (ηq/ηm = 2), similar folds do not form. It thus appears as if a viscosity contrast near unity is required to produce similar folds in rocks, under the conditions simulated and different temperature dependencies of viscosities of materials in layered sequences is one important means of reducing viscosity contrasts.  相似文献   

10.
Coarse-grained natural jadeitite samples from Myanmar were experimentally deformed in a Griggs-type solid-medium apparatus at strain rates of 2·10−5 and 5·10−6 s−1 and temperatures of 900 and 1000 °C. The microfabrics of the deformed samples are investigated by scanning electron microscopy (SEM) using the electron backscatter diffraction (EBSD) technique. The critical shear stress for twinning in the (100) [001] system is derived from the orientation distribution of jadeite crystals with and without mechanical twins. The results indicate a homogeneous stress field within the sample and a critical shear stress of 150±25 MPa, which compares well to that determined by Kollé and Blacic [J. Geophys. Res. 87 (1982) 4019] for mechanical twinning of other clinopyroxenes. With the critical shear stress known, mechanical twinning of jadeite can be used as a paleopiezometer for high stress tectonic environments.  相似文献   

11.
Immature vitrinite samples from a Miocene lignite seam of western Germany (H/C = 1.14, O/C = 0.41) and alginite concentrates from a Tasmanite deposit of Australia (H/C = 1.60, O/C = 0.10) were pyrolyzed in a stream of argon at heating rates of 0.1 and 2.0°C/min up to temperatures varying from 200 to 670°C. The solid maceral residues were subjected to elemental and microscopical analysis and studied by IR and 13C CP/MAS NMR spectroscopy with respect to structural modifications.The maximum pyrolytic weight loss amounts to 60% of the initial organic matter in the case of vitrinite and to 85% for alginite, the onset of degradation reactions being shifted to higher temperatures with increasing rate of heating. Both infrared and NMR spectra of the vitrinite samples indicate a rapid decomposition of the cellulose component upon heating whereas lignin related structures such as aromatic ether linkages remain remarkably stable. The main hydrocarbon release from vitrinite occurs at very early evolution stages (Tmax = 296°C, Rm = 0.20% at 0.1°C/min; Tmax = 337°C, Rm = 0.23 at 2.0°C/min). Hydrocarbon generation from alginite requires higher temperatures (Tmax = 388 and 438°C) and is completed within a distinctly narrower temperature range.The pronounced increase of vitrinite reflectance between 350 and 670°C seems to be associated with a rather time-consuming reorganization of the residual organic material. The concomitant growth of polyaromatic units is illustrated by the increasing intensity ratio of the aromatic ring stretching vibration bands at 1600 and 1500 cm−1. These reactions are moreover marked by increasing loss of phenolic oxygen and by increasing conversion of aliphatic carbon into fixed aromatic carbon.  相似文献   

12.
Previous experiments by Raleigh et al. (1971) have shown that at strain rates of 10−2.sec−1 to 10−7.sec−1 only slip occurs in dry enstatite at temperatures above 1300°C and 1000°C, respectively.The present experiments have been conducted on polycrystalline enstatite under wet conditions in this regime where enstatite only slips, polygonizes and recrystallizes. Slip occurs throughout the whole regime on the system (100)[001] and at strains greater than 40% the system (010)[001] is observed. Polygonization and intragranular recrystallization begin at about 1300°C and 10−4.sec−1 and the orientation of these neoblasts is host-controlled. At lower strain rates intergranular neoblasts develop and their fabric is one of [100] maximum parallel with σ1 and [010] and [001] girdles in the σ2 = σ3 plane, similar to those in natural enstatite tectonites.Dislocation substructures of experimentally deformed enstatite have been examined by transmission electron microscopy. The samples were deformed within the field in which slip polygonization and recrystallization are the dominant deformation mechanisms. Samples within this regime have microstructures that are characterized by stacking faults and partial dislocations. Under the conditions of steady-state flow in olivine, these microstructures inhibit the operation of recovery mechanisms in enstatite.Other samples deformed within the polygonization and recrystallization field have microstructures that confirm the optical observations of intragranular and intergranular growth of neoblasts. It is suggested that the former result from strain-induced tilt of subrains, whereas the latter may result from bulge nucleation into adjacent subgrains.Mechanical data from constant strain-rate experiments at steady state, stress relaxation and temperature-differential creep tests are best fit to a power-law creep equation with the stress exponent, n~3 and the apparent activation energy for creep, Q~65 kcal/mole. Extrapolation of this equation to a representative natural geologic strain rate of 10−4. sec−1, over the temperature interval 1000–2000°C, gives an effective viscosity range of 1020–1018 poise and stresses in the range of 7-0.1 bar, respectively. Comparison with corrected wet-olivine mechanical data (Carter, 1976) over the same environment indicates that olivine is consistently the weaker of the two minerals and will recrystallize whilst enstatite will only slip and kink, thus accounting for the different habits of olivine and enstatite in ultramafic tectonites.  相似文献   

13.
Khalil Sarkarinejad   《Tectonophysics》2007,442(1-4):49-65
The Ghouri area in southwest Iran exposes a cross section through the Zagros orogenic belt. The area provides an opportunity to investigate quantitative finite strain (Rs), kinematic vorticity number (Wk), proportions of pure shear and simple shear components, sense of shear indicators, steeply plunging lineations, and other moderate to steeply plunging stretching lineations in a transpressional zone. Based on a classical strain analysis of deformed microfossils with oblate strain ellipsoid shape, the Zagros orogenic belt is classified as a pure-shear dominated zone of transpression, but asymmetry of shear-sense indicators suggests that a significant component of simple shear was involved along the deformation zone boundaries. The long axes of the microfossils and stretched pebbles of a deformed conglomerate were used to indicate the stretching direction in this zone. The stretching lineations have a steep to moderate plunge but a constant strain magnitude. Characteristics of dextral inclined transpressional kinematics in the Zagros continental collision zone were quantified and indicate an estimated k-value < 1, an angle between the maximum horizontal axis of the instantaneous strain ellipsoid and the zone boundary (θ = 32°), asymmetrical dextral shear-sense indicators, and an angle of relative plate motion (α = 25°).  相似文献   

14.
Measuring strain from deformed xenoliths is problematic due mainly to the large initial shape variations of these markers. A method is described which allows mean initial shape to be determined for a number of xenolith populations by displaying their logarithmic ranges (log Rfmax — log Rfmax) on a Range diagram. The diagram contains a check on validity and allows bad samples to be recognised. Xenolith data from a deformed granite in northwest Ireland is analysed using the method.  相似文献   

15.
Marine, organic-rich rock units commonly contain little for vitrinite reflectance (VR0) measurement, the most commoly used method of assessing thermal maturity. This is true of the Lower Jurassic “Nordegg Member”, a type I/II, sulphur-rich source rock from the Western Canada Sedimentary Basin. This study examines the advantages and pitfalls associated with the use of Rock-Eval Tmax and solid bitumen reflectance (BR0) to determined maturity in the “Nordegg”. Vitrinite reflectance data from Cretaceous coals and known coalification gradients in the study area are used to extrapolate VR0 values for the “Nordegg”.Tmax increases non-linearly with respect to both BR0 and extrapolated VR0 values. A sharp increase in the reflectaance of both solid bitumen and vitrinite occurs between Tmax 440–450°C, and is coincident with a pronounced decrease in Hydrogen Index values and the loss of solid bitumen and telalginite fluorescence over the same narrow Tmax interval. This Tmax range is interpreted as the main zone of hydrocarbon generation in the “Nordegg”, and corresponds to extrapolated VR0 values of 0.55–0.85%. The moderate to high sulphur contents in the kerogen played a significant role in determining the boundaries of the “Nordegg” oil window.A linear relationship between BR0 and extrapolated VR0, as proposed elsewhere, is not true for the “Nordegg”. BR0 increases with respect to extrapolated VR0 according to Jacob's (1985) formula (VR0=0.618×(BR0)+0.40) up to VR0≈0.72% (BR0≈0.52%). Beyond this point, BR0 increases sharply relative to extrapolated VR0, according to the relatioship VR0 = 0.277 × (BR0) + 0.57 (R2 = 0.91). The break in the BR0−VR0 curve at 0.72%VR0 is thought to signifiy the peak of hydrocarbon generation and represents a previously unrecognized coalification jump in the solid bitumen analogous to the first coalification jump of liptinites.  相似文献   

16.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   

17.
Measurements of total, incremental and progressive strains associated with the development of small scale crenulation cleavage in some low-grade metamorphic rocks from Australia and Switzerland are applied to a discussion of the mechanical significance of the cleavage.Limits are placed on the amount of incremental and total slip or simple shear possible along the cleavage by the observation that the XY principal plane trace of bulk total crenulation strain coincides within 4° of the crenulation cleavage trace in all cases where this strain has been measured or estimated. The measurements are made on eight specimens using deformed porphyroblasts, crystal fibres in pressure-shadows around pyrite and flattened folds and include deformations with coaxial and non-coaxial histories.Further measurements derived from pressure-shadow fibres (eight specimens) show that the style and orientation of incremental deformation are essentially independent of the crenulation cleavage, except for a limit (43°) to the obliquity of the principal incremental extension axis during a given cleavage episode. The only special deformation related to the cleavage is the coaxial one. An indication of passive cleavage behaviour at high strain is shown by the progressive strain history of one specimen. Evidence for passive rotation of a transected axial plane is shown by another. A model is proposed to account for these observations, especially the conditions necessary for initiation and continued development of a new cleavage fabric.Some further applications of existing strain measurement techniques are described: of the Rf/Øf method to heterogeneously superposed tectonic strains and of an improved procedure of tα/α flattening analysis.  相似文献   

18.
Upper Triassic to Middle Jurassic coals from the Alborz region of northern Iran were analyzed by reflected light-fluorescence microscopy and Rock Eval 6® pyrolysis to evaluate their regional rank variation, degree of hydrothermal alteration, and petroleum generative potential. The coal ranks in the region range from a low of 0.69%RoR in the Glanddeh-Rud area to a high of 1.02%RoR in the Gajereh area. Tmax (°C) values (Rock Eval 6 pyrolysis) also increase progressively with increasing vitrinite %Ro values, however Tmax is suppressed lower than would be expected for each rank ranging from 428 °C for the Glandeeh coal to 438 °C for the Gajereh coal. Tmax suppression may be caused by maceral composition and soluble organics within the coal. Moderately high hydrogen indices, persistent and oily exudations from the coals during UV exposure, and traces of hydrocarbon fluid inclusions suggest that liquid petroleum was likely generated within some of the coals.  相似文献   

19.
Post-deformational annealing of calcite rocks   总被引:3,自引:3,他引:3  
The evolution of microstructure and crystallographic preferred orientation (CPO) during post-deformational annealing was studied on three calcite rock types differing in purity and grain size: Carrara marble (98% calcite, mean grain size of 115 μm), Solnhofen limestone (96%, 5 μm) and synthetic calcite aggregates (99%, 7 μm). Samples were first deformed in torsion at 727 °C at a shear strain rate of 3 × 10 4 s 1 to a shear strain of 5 and subsequently heat-treated at 727 °C for various durations between 0 and 24 h. Microstructures and CPOs were analysed by optical microscopy, image analysis and electron backscatter diffraction (EBSD).All rock types deformed in the dislocation creep field at the same applied conditions, but their microstructures and CPOs after deformation and after annealing differed depending on starting grain size and material composition. In Carrara marble and in the synthetic calcite aggregate, a strong CPO developed during deformation accompanied by dynamic recrystallisation with significant changes in grain size. During annealing, widespread grain growth and subtle changes of CPO occurred, and equilibrated foam microstructures were approached after long annealing times. The CPO is the only feature in annealed samples indicating an earlier deformation phase, although it is not always identical to the CPO formed during deformation. In the more impure Solnhofen limestone, secondary phases on grain boundaries suppressed grain boundary mobility and prevented both the formation of a recrystallisation CPO during deformation and grain size modification during deformation and annealing.  相似文献   

20.
Simultaneous measurements of compressional and shear wave velocities, Vp and Vs, in acidic and basic igneous rocks and volcanic glasses, were made up to 900°C and at 10–20 kbar.The effects of pressure and temperature on Vp and Vs in glasses and glassy rocks change at about 600°C, presumably the glass transition temperature. These effects are directly related to the silica content in the samples. and for obsidian are negative at room temperature and 245°C, but are positive at 655°C. The velocity—pressure relations for obsidian display an obvious hysteresis phenomena. for basalt glass is slightly negative, but is positive for usual substances at room temperature, and for obsidian and glassy andesite are positive up to about 600°C but are negative above that temperature. However, for basalt glass as well as other crystalline rocks, and are negative at all temperatures. Glass once heated above the glass transition temperature Tg under pressure P1 retains the memory of pressure P1 after it is cooled down below Tg and while subjected to another pressure P2. An abrupt shift of the velocities correlating to pressure P2 occurs when the glass is again heated to Tg. VpT and VsT relations for obsidian, glassy andesite, and basalt glass clearly exhibit this pressure memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号