首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高烈度区连续梁桥的减震设计方法研究   总被引:2,自引:1,他引:2  
本文以高烈度区的某三跨连续梁桥为例,分别采用基础隔震和消能减震两种措施进行结构的减震分析;针对隔震结构减震效果好但主梁位移过大的特点,提出了在采用铅芯橡胶隔震支座的同时设置粘滞阻尼器的减震方案,其非线性时程分析结果表明,该方案能有效地降低结构的地震反应,可供工程实践参考。  相似文献   

2.
Lead-rubber hysteretic bearings provide in a single unit the combined features of vertical load support, horizontal flexibility and energy absorbing capacity required for the base isolation of structures from earthquake attack. The lead-rubber hysteretic bearing is a laminated elastomeric bearing of the type used in bridge structures, with a lead plug down its centre. Since the invention of the lead-rubber bearing, a total of eleven bearings up to a diameter of 650mm, with lead plugs ranging from 50 to 170mm in diameter, have been tested under various conditions, including vertical loads to 3·15 MN, strokes to ρ 110 mm, rates from 1 mm/h to 100 mm/s, and temperatures of ?35°C to + 45°C. In all of these tests, the lead-rubber bearings behaved satisfactorily and the hysteresis loops could be described reasonably well by assuming that the lead behaved as an elastic-plastic solid with a yield stress in shear of 10·55 MPa. The bearings showed little rate dependence at ~100 mm/s, though at creep rates of ~1 mm/h the force due to the lead dropped to 30 per cent of that at typical earthquake frequencies. The effect of many small displacements has been tested with 11000 cycles at ±3 mm. A total of 92 lead-rubber bearings have been used in New Zealand to base isolate one building and three bridges. They have yet to be used overseas. This paper describes the tests on the lead-rubber bearings, the results and a design procedure for selecting the size of the lead plug.  相似文献   

3.
The objective of this study is to identify system parameters from the recorded response of base isolated buildings, such as USC hospital building, during the 1994 Northridge earthquake. Full state measurements are not available for identification. Additionally, the response is nonlinear due to the yielding of the lead-rubber bearings. Two new approaches are presented in this paper to solve the aforementioned problems. First, a reduced order observer is used to estimate the unmeasured states. Second, a least squares technique with time segments is developed to identify the piece-wise linear system properties. The observer is used to estimate the initial conditions needed for the time segmented identification. A series of equivalent linear system parameters are identified in different time segments. It is shown that the change in system parameters, such as frequencies and damping ratios, due to nonlinear behavior of the lead-rubber bearings, are reliably estimated using the presented technique. It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.  相似文献   

4.
铅芯橡胶支座(lead-rubber bearing,LRB)是目前应用最为广泛的减隔震装置,普遍应用于建筑、桥梁、储罐和核电站等结构,其抗震性能已在屡次地震中得以验证。当LRB承受大幅值的往复变形时,其力学性能受内部铅芯发热的影响而发生显著变化,主要表现在滞回耗能、特征强度和刚度的降低等方面。首先,总结了铅芯橡胶支座及其结构在以往地震中的震害情况,介绍了预测LRB内部铅芯变形发热和温度升高的理论及近似求解方法,以及基于试验和有限元的验证方法及注意事项;其次,概述了LRB因内部铅芯变形发热导致其强度退化的分析模型和强度退化对结构地震反应的影响;最后,归纳了隔震结构在进行模型试验时,铅芯橡胶支座的相似理论和缩尺问题。  相似文献   

5.
铅—橡胶阻尼器的试验研究   总被引:3,自引:0,他引:3  
通过4种外径相同但铅芯直接不同的8个铅-橡胶阻尼器的低周往复水平荷载试验,研究影响铅-橡胶阻尼器性能的主要因素,得到了这种阻尼器的初始刚度,屈服刚度和等效阻尼比的变化规律。试验结果还表明,铅-橡胶阻尼器即使在很小的剪切变形下也具有较高的耗能能力。  相似文献   

6.
The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of beyond design basis loadings, including extreme earthquakes. The United States Nuclear Regulatory Commission is sponsoring a research project that will quantify the response of low damping rubber (LDR) and lead rubber (LR) bearings under loadings associated with extreme earthquakes. Under design basis loadings, the response of an elastomeric bearing is not expected to deviate from well‐established numerical models, and bearings are not expected to experience net tension. However, under extended or beyond design basis shaking, elastomer shear strains may exceed 300% in regions of high seismic hazard, bearings may experience net tension, the compression and tension stiffness will be affected by isolator lateral displacement, and the properties of the lead core in LR bearings will degrade in the short‐term because of substantial energy dissipation. New mathematical models of LDR and LR bearings are presented for the analysis of base isolated structures under design and beyond design basis shaking, explicitly considering both the effects of lateral displacement and cyclic vertical and horizontal loading. These mathematical models extend the available formulations in shear and compression. Phenomenological models are presented to describe the behavior of elastomeric isolation bearings in tension, including the cavitation and post‐cavitation behavior. The elastic mechanical properties make use of the two‐spring model. Strength degradation of LR bearing under cyclic shear loading due to heating of lead core is incorporated. The bilinear area reduction method is used to include variation of critical buckling load capacity with lateral displacement. The numerical models are coded in OpenSees, and the results of numerical analysis are compared with test data. The effect of different parameters on the response is investigated through a series of analyses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Numerical simulations are performed to assess the effects of near-fault ground motions on base-isolated buildings that consist of either lead-rubber (LRB) or friction-pendulum system (FPS) bearings in addition to supplemented viscous dampers. While LRB and FPS isolation systems have been applied for a number of years, the addition of supplemental damping devices is being currently considered for strong ground motions to reduce the isolator displacements. However, the main problem in this case is that the addition of damping may increase both internal deformation and absolute accelerations of the superstructure and thus may defeat many of the gains for which base isolation is intended. In the present paper, a detailed and systematic investigation on the performance of LRB and FPS isolation systems, provided with supplemental viscous damping under the effect of near-fault ground motions, has been carried out by using commercial finite element software.  相似文献   

8.
This study assesses analytically the effectiveness, feasibility and limitations of elastic and hysteretic damping augmentation devices, such as elastomeric and lead–rubber bearings, with respect to the dynamic and seismic performance of cable-stayed bridges. This type of bridge, which has relatively greater flexibility, is more susceptible to undesirable vibrations due to service and environmental loadings than are conventional bridges. Therefore, damping is a very important property. Supplementary damping devices based on the plastic deformation of lead and steel are proposed at critical zones, such as the deck–abutment and deck–tower connections, to concentrate hysteretic behaviour in these specially designed energy absorbers. Inelastic behaviour in primary structural elements of the bridge can therefore be avoided, assuring the serviceability of these cable-supported bridges. Analytically, three-dimensional modelling is developed for the bridge and the damping devices, including the bridge geometrical large-displacement non-linearity and the local material and geometric non-linearities of the energy dissipation devices. The effects of various modelling and design parameters of the bridge response are also studied, including the properties, modelling accuracy and location of the devices along the bridge superstructure. It is shown that an optimum model of the seismic performance of the bridges with these passive control devices can be obtained by balancing the reduction in forces along the bridge against tolerable displacements. Appropriate locations and hysteretic energy dissipation properties of the devices can achieve a significant reduction in seismic-induced forces, as compared to the case with no dampers added, and relatively better control of displacements. In addition, proper selection of the location of the passive control systems can help redistribute forces along the structure which may provide solutions for retrofitting some existing bridges. However, caution should be exercised in simulating the device response for a reliable bridge structural performance. Moreover, while seismic response of the bridge can be significantly improved with added dampers, their degree of effectiveness also depends on the energy absorption characteristics of the dampers.  相似文献   

9.
This study proposes a novel mild steel damper with non-uniform vertical slits. The infl uence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.  相似文献   

10.
This paper investigates the response of lead rubber bearings (LRBs) under bidirectional earthquake excitations when lead core heating effect is of concern. For this purpose, a series of nonlinear response history analyses were conducted with a bilinear force‐deformation relation for LRBs. In the considered bilinear representation, the strength of LRBs deteriorates because of lead core heating under cyclic motions. Response of LRBs was studied in terms of maximum isolator displacements (MIDs) and maximum lead core temperature as a function of isolator characteristics (characteristic strength to weight ratio, Q/W, and post‐yield isolation period, T). Nonlinear response history analyses were performed using two sets of ground motions clustered according to their soil classifications. To quantify the interacted effects of coupled analysis and lead core heating on MID, unidirectional analyses were also performed. Furthermore, the efficacy of equivalent lateral force procedure in estimating the MID of LRBs was also tested for the cases in which temperature‐dependent behavior of LRBs was considered. The results demonstrate that the temperature rises in the lead core of LRBs in bidirectional analyses are approximately 50% higher than that of unidirectional ones. It decreases with increasing Q/W ratio and T. It is also revealed that equivalent lateral force procedure gives close estimations for MID with some overestimation even for temperature‐dependent behavior of LRBs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic response of light secondary systems in a building is dependent on the response of the primary structural system to the seismic ground motion with the result that very high accelerations can be induced in such secondary systems. This response can be reduced through the use of aseismic base isolation which is a design strategy whereby the entire building can be decoupled from the damaging horizontal components of seismic ground motion by the use of some form of isolation system. The paper presents a theoretical analysis of the response of light equipment in isolated structures and a parallel experimental programme both of which show that the use of base isolation can not only attenuate the response of the primary structural system but also reduce the response of secondary systems. Thus, the design of equipment and piping in a base-isolated building is very much simpler than that for a conventionally founded structure: inelastic response and equipment-structure interaction need not be considered and multiple support response analysis is rendered unnecessary. Although an isolation system with linear elastic bearings can reduce the acceleration of the structure, it may be accompanied by large relative displacements between the structure and the ground. A system using lead-rubber hysteretic bearings, having a force-displacement relation which is approximately a bilinear loop, can reduce these displacements. A parallel experimental programme was carried out to investigate the response of light equipment in structures isolated using lead-rubber bearings. The experimental results show that these bearings can dissipate energy and limit the displacement and acceleration of the structure but are less effective in reducing the accelerations in the internal equipment. The results of both the analysis and the tests show that base isolation is a very effective method for the seismic protection of light equipment items in buildings.  相似文献   

12.
Recently, several hybrid protective systems have been explored for applications to seismic-excited bridge structures. In particular, two types of aseismic hybrid protective systems have been shown to be quite effective: (i) rubber bearings and variable dampers (or actuators), and (ii) sliding bearings and actuators. In this paper, control methods are presented for these hybrid protective systems. The control methods are based on the theory of variable structure system (VSS) or sliding mode control (SMC). Emphasis is placed on the static (direct) output feedback controllers using only the information measured from a few sensors without an observer. Simulation results demonstrate that the control methods presented are robust with respect to system parametric uncertainties and the performance is quite remarkable. Sensitivity studies are conducted to evaluate the effectiveness of hybrid protective systems and passive sliding isolators for reducing the response of seismic-excited bridge structures. The advantages of each protective system are demonstrated by simulation results for a wide range of earthquake intensities.  相似文献   

13.
This paper presents experimental and analytical results on the seismic response of a rigid structure supported on isolation systems that consist of either lead rubber or sliding bearings. Shake table tests are conducted with various levels of isolation damping that is provided from the bearings and supplemental viscous fluid dampers. The table motions originated from recorded strong ground motions that have been compressed to the extent that the mass of the model structure corresponds to the mass of a typical freeway overcrossing. Experimental data are used to validate mechanical idealizations and numerical procedures. The study concludes that supplemental damping is most effective in suppressing displacements of rigid structures with moderately long isolation periods (TI≤3 sec) without affecting base shears. Friction damping is most effective in suppressing displacement amplifications triggered by long duration pulses—in particular, pulses that have duration close to the isolation period. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Lead rubber bearings, which have been extensively applied in many seismic isolation designs for buildings, infrastructures, and facilities worldwide, were tested under unilateral reversal loading as well as nonproportional plane loading including circular, figure-eight, and square orbits in this study. The test results indicate that unlike the unilateral hysteretic behavior, the bilateral one of lead rubber bearings is too complicated to be characterized adequately by a simplified bilinear hysteretic model. It is mainly attributed to the bilateral coupling effect, which can be clearly observed from the abnormal deformation of the mesh pattern drawn on the rubber cover during the tests. In addition, after being subjected to nonproportional plane loading, the tested bearings reveal visible permanent twisting deformation. The profiles of the cut bearings present the fracture of the inside lead plugs. Even so, the further unilateral reversal loading test results prove that the fracture might not affect the whole hysteretic behavior and mechanical properties very much. The applicability, robustness, and generalization of adopting three previously developed analytical models for describing the coupled bilateral hysteretic behavior of lead rubber bearings are further demonstrated by comparing their predictions with the nonproportional plane loading test results. Although the coefficients are identified from unilateral reversal loading tests, the three analytical models can still have an acceptable prediction capability.  相似文献   

15.
An experimental investigation on a base isolation system incorporating stainless steel–Teflon bearings as sliders, and pressurized fluid viscous spring dampers, is presented in this paper. In the system examined, dampers are connected to the base floor of an isolated building to provide the desired passive control of response in the superstructure, as well as to guarantee that it re‐centres completely after the termination of a seismic action. Two types of experiments were conducted: sinusoidal and random cyclic tests, and a pseudodynamic test in ‘substructured’ configuration. The cyclic tests were aimed at characterizing what follows: the hysteretic and strain‐rate‐dependent response of the considered highly non‐linear spring dampers; the normal pressure‐ and strain‐rate‐dependent frictional behaviour of steel–Teflon bearings, manufactured in compliance with the latest standards for this class of sliders; and the combined response of their assembly. The pseudodynamic test simulated the installation of the protection system at the base of a 2:3‐scale three‐storey steel frame structure, already tested in unprotected conditions by an earlier experimental campaign. Among other findings, the results of the performed tests, as well as of relevant mechanical interpretation and numerical simulation analyses, confirmed the linear additive combination of the dissipative actions of spring dampers and sliders in this mixed installation, and the high protective performance of the considered base isolation/supplemental damping system in a realistic earthquake simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Damage investigation of small to medium-span highway bridges in Wenchuan earthquake revealed that typical damage of these bridges included: sliding between laminated-rubber bearings and bridge girders, concrete shear keys failure, excessive girder displacements and even span collapse. However, the bearing sliding could actually act as a seismic isolation for piers, and hence, damage to piers for these bridges was minor during the earthquake. Based on this concept, an innovative solation system for highway bridges with laminated-rubber bearings is developed. The system is comprised of typical laminated-rubber bearings and steel dampers. Bearing sliding is allowed during an earthquake to limit the seismic forces transmitting to piers, and steel dampers are applied to restrict the bearing displacements through hysteretic energy dissipation. As a major part of this research, a quarter-scale, two-span bridge model was constructed and tested on the shake tables to evaluate the performance of this isolation system. The bridge model was subjected to a Northridge and an artificial ground motion in transverse direction. Moreover, numerical analyses were conducted to investigate the seismic performance of the bridge model. Besides the test bridge model, a benchmark model with the superstructure fixed to the substructure in transverse direction was also included in the numerical analyses. Both the experimental and the numerical results showed high effectiveness of this proposed isolation system in the bridge model. The system was found to effectively control the pier-girder relative displacements, and simultaneously, protect the piers from severe damage. Numerical analyses also validated that the existing finite element methods are adequate to estimate the seismic response of bridges with this isolation system.  相似文献   

17.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
For the purpose of accurately predicting the seismic response of base-isolated structures, an analytical hysteresis model for elastomeric seismic isolation bearings is proposed. An extensive series of experimental tests of four types of seismic isolation bearings—two types of high-damping rubber bearings, one type of lead-rubber bearing and one type of silicon rubber bearing—was carried out with the objective of fully identifying their mechanical characteristics. The proposed model is capable of well-predicting the mechanical properties of each type of elastomeric bearing into the large strain range. Earthquake simulator tests were also conducted after the loading tests of the individual bearings. In order to show the validity of the proposed model, non-linear dynamic analyses were conducted to simulate the earthquake simulator test results. Good agreement between the experimental and analytical results shows that the model can be an effective numerical tool to predict not only the peak response value but also the force–displacement relationship of the isolators and floor response spectra for isolated structures. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
A combined energy dissipation system is developed in this paper. In this system lead rubber dampers and their parallel connection with oil dampers are used in the braces of a structural frame. A dynamic analysis method of the system, including the modelling of the lead rubber damper and the oil damper, is proposed. In the analysis method, the restoring force characterestics of the lead rubber damper is simulated by the Bouc–Wen hysteretic model, and the behaviour of the oil damper is simulated by a velocity and displacement‐related model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. A series of shaking table tests of a three‐storey steel frame with the combined energy dissipation system are carried out to evaluate the performance of the system and to verify the analysis method. The test and analysis show that the performance of the combined energy dissipation system is quite satisfactory and there is a good agreement between the analysis and test results, which indicates that the analysis method proposed in this paper is valid and suitable for the dynamic analysis of the combined energy dissipation system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Sliding base‐isolation systems used in bridges reduce pier drifts, but at the expense of increased bearing displacements under near‐source pulse‐type earthquakes. It is common practice to incorporate supplemental passive non‐linear dampers into the isolation system to counter increased bearing displacements. Non‐linear passive dampers can certainly reduce bearing displacements, but only with increased isolation level forces and pier drifts. The semi‐active controllable non‐linear dampers, which can vary damping in real time, can reduce bearing displacements without further increase in forces and pier drifts; and hence deserve investigation. In this study performance of such a ‘smart’ sliding isolation system, used in a 1:20 scaled bridge model, employing semi‐active controllable magneto‐rheological (MR) dampers is investigated, analytically and experimentally, under several near‐fault earthquakes. A non‐linear analytical model, which incorporates the non‐linearities of sliding bearings and the MR damper, is developed. A Lyapunov control algorithm for control of the MR damper is developed and implemented in shake table tests. Analytical and shake table test results are compared. It is shown that the smart MR damper reduces bearing displacements further than the passive low‐ and high‐damping cases, while maintaining isolation level forces less than the passive high‐damping case. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号