首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Marine pollution bulletin》2012,64(5-12):370-375
In Korea, the new permission criteria for industrial effluents based on Daphnia magna acute toxicity tests will be gradually implemented starting from 2011. Thus, in this study, toxicity assessment and identification using a marine species (Tigriopus japonicus) and the freshwater species (D. magna) was comparatively investigated. Effluent from an acid mine drainage treatment plant showed acute toxicity toward both organisms due to low pH, which was removed by neutralization of the effluent. Additionally, evaluation of the effluent of an electronics company revealed that Cu was attributable to the observed toxicity, and the effluent was more toxic toward T. japonicus than D. magna. Moreover, effluents from a metal plating factory were acutely toxic toward D. magna (6.50 TU), while they were not toxic against T. japonicus. Toxicity identification revealed that the high level of Cl (12,841 mg L−1) was the cause of toxicity. Thus, the effluents had no effect on the marine species, T. japonicus. These findings suggest that a marine species rather than a freshwater species is more desirable for toxicity assessment of industrial effluent discharged into the saltwater, and thus should be considered in the legislation of toxicity-based discharge limits in Korea.  相似文献   

2.
Kim E  Jun YR  Jo HJ  Shim SB  Jung J 《Marine pollution bulletin》2008,57(6-12):637-644
Because of complexity and diversity of toxicants in effluent, chemical analysis alone gives very limited information on identifying toxic chemicals to test organisms. Toxicity identification evaluation (TIE) techniques have been widely used to identify toxicants in various samples including industrial wastewater as well as natural waters. In response to new regulation for effluent discharge in Korea, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels in industrial effluents. This work was a preliminary study examining toxicity levels in effluent from one metal plating factory using Daphnia magna (48 h immobility) and identifying toxicity-causing substances. Toxicity tests showed variability on different sampling occasions and the results of TIE methods indicated that both organic compounds and metals contributed to the observed toxicity in metal plating effluent. Further studies are necessary to help reduce effluent toxicity especially from direct dischargers, who will have to comply with the new regulation.  相似文献   

3.
Fish, Cyprinus carpio and Channa punctatus in four sizes (6.0 ± 1.2; 12.5 ± 1.6; 20.6 ± 1.5 and 28.0 ± 1.8 cm in total length) were exposed to industrial effluents from the Sangam Dyeing Factory (Ludhiana), the Sterling Steel and ABC Paper Mills (Hoshiarpur) to evaluate the acute toxicity of these effluents at different fish sizes. Results reveal that the toxicity of industrial effluents decreased with the increased fish size from 6.0 ± 1.2 to 20.6 ± 1.5 cm in length. However, for specimens of the size of 28.0 ± 1.6 cm and more, the toxicity of the effluents increased with an increase in fish size. On the basis of the relative toxicity to fish, effluent from the Sterling Steel Mill was found to be highly toxic to fish and effluent from the Dyeing Factory least toxic except for the fish of 6.0 ± 1.2 cm at which dyeing factory effluent was most toxic and ABC paper mill effluent the least toxic.  相似文献   

4.
《Marine pollution bulletin》2009,58(6-12):637-644
Because of complexity and diversity of toxicants in effluent, chemical analysis alone gives very limited information on identifying toxic chemicals to test organisms. Toxicity identification evaluation (TIE) techniques have been widely used to identify toxicants in various samples including industrial wastewater as well as natural waters. In response to new regulation for effluent discharge in Korea, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels in industrial effluents. This work was a preliminary study examining toxicity levels in effluent from one metal plating factory using Daphnia magna (48 h immobility) and identifying toxicity-causing substances. Toxicity tests showed variability on different sampling occasions and the results of TIE methods indicated that both organic compounds and metals contributed to the observed toxicity in metal plating effluent. Further studies are necessary to help reduce effluent toxicity especially from direct dischargers, who will have to comply with the new regulation.  相似文献   

5.
The fish Cyprinus carpio (HAM.) and Channa punctatus (BL.) of the size ranging between 6.0 ± 1.2 cm and 28.0 ± 1.6 cm were exposed to different concentrations of industrial effluents from M/s Punjab Tannery Ltd. (Jalandhar), M/s Spinning Mill Ltd. (Hoshiarpur) and M/s Food Specialist Ltd. (Moga) for evaluating the influence of fish size on the acute toxicity of these effluents. Results indicate that the relative toxicity of the effluents decreased with the increase in fish size from 6.0 ± 1.2 cm to 20.6 ± 1.5 cm. However, for specimens of the size of 28.0 ± 1.6 cm and more, the toxicity of the effluents increased with an increase in fish size. On the basis of the relative toxicity to fish, effluent from Punjab Tannery was found highly toxic and from Food Specialist Industry, the least toxic.  相似文献   

6.
The intertidal copeopod Tigriopus japonicus, which is abundant and widely distributed along the coasts of Western Pacific, has been suggested to be a good marine ecotoxicity testing organism. In this study, a series of experiments were conducted to investigate the reproducibility and variability of copper (Cu) sensitivity of T. japonicus so as to evaluate its potential to serve as an appropriate test species. To understand the seasonal variation of Cu sensitivity, individuals of T. japonicus were collected from the field in summer and winter, and subjected to standard 96 h acute (static renewal) toxicity tests. 96 h-LC50 values of T. japonicus collected from the two seasons were marginally different (p = 0.05), with an overall coefficient of variation (CV) of 33%. Most importantly, our results indicated that chronic Cu sensitivity of T. japonicus was highly reproducible. The CVs of intrinsic rates of increase in the population of the control and Cu treatment (10 microg Cu l(-1)) groups were only 10-11% between 10 runs of a standardised complete life-cycle test. Moreover, different Cu(II) salts generally resulted in a similar 96 h-LC50 value while Cu(I) chloride was consistently slightly less toxic than Cu(II) salts. Given such a high reproducibility of toxic responses, it is advocated to use T. japonicus as a routine testing organism.  相似文献   

7.
In 1995, Sydney Water Corporation undertook an ecological and human health risk assessment for 10 sewage treatment plants (STPs) that discharge primary (6 STPs) and secondary (4 STPs) treated effluents into coastal waters in the Sydney and Illawarra regions, NSW, Australia. A program of toxicity testing of effluent from the 10 STPs was undertaken to determine the toxic effects of the effluents and as a weight-of-evidence study for the risk assessment.

Three types of bioassays were used to test multiple samples of effluent from each STP. Tests used were the sea urchin (Heliocidaris tuberculata) fertilization and larval development bioassays and the amphipod (Allorchestes compressa) survival bioassay.

Comparing between STPs, primary treated effluent was slightly more toxic than secondary treated effluent for all three tests. The highest toxicity was recorded for those STPs that use primary treatment and discharge to the shoreline. Comparing between tests, the sea urchin fertilization bioassay was slightly more sensitive than the sea urchin larval development bioassay, with the amphipod survival bioassay being the least sensitive.

This paper will describe the results of this toxicity testing program and discuss the application of the study results as weight-of-evidence for the risk assessment study.  相似文献   


8.
《Marine pollution bulletin》2014,78(1-2):118-129
There is a growing concern of seawater intrusion to freshwater aquifers due to groundwater overexploitation in the eastern coastal belt of Southern India. The problem becomes complex in the regions where industrial effluents are also contaminating the freshwater aquifers. In order to understand the hydrochemical complexity of the system, topographic elevation, static water level measurements, major ion chemistry, ionic cross plots, water type contours and factor analysis were applied for 144 groundwater samples of shallow and deep sources from Quaternary and Tertiary coastal aquifers, located within the industrial zone of 25 km2 area near Cuddalore, Southern India. The ionic cross plots indicates dissolution of halite minerals from marine sources and seawater mixing into inland aquifers up to the level of 9.3%. The factor analysis explains three significant factors totaling 86.3% of cumulative sample variance which includes varying contribution from marine, industrial effluent and freshwater sources.  相似文献   

9.
Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in oil, comprising 85–95% of total PAHs. However, little attention has been paid to these chemicals in ecological risk assessment of marine oil spill. A comparative study of the toxic effects of phenanthrene and retene (7-isopropyl-1-methylphenanthrene, an alkyl-phenanthrene) on the early life stage of marine medaka (Oryzias melastigma) was conducted. Results showed that retene was significantly more toxic than phenanthrene, and marine medaka could be more sensitive to retene than some freshwater fishes. Retene had a higher excretion rate than phenanthrene during the larvae stage. Both of compounds resulted in developmental malformation of marine medaka embryos, with phenanthrene affecting on peripheral vascular system and yolk sac, while retene affecting on cardiac tissues. The toxicity of phenanthrene might be mainly related to its anesthetic effects, and that of retene might be related to the CYP1A-mediated toxicity of its metabolites.  相似文献   

10.
Melbourne Water's Eastern Treatment Plant (ETP) produces a secondary-treated sewage effluent which is chlorinated and discharged into Bass Strait at Boags Rocks, Victoria, Australia. Disappearance of the sensitive brown seaweed Hormosira banksii from rock platforms immediately adjacent to the shore-line discharge was identified in the early 1990s. Subsequently, Melbourne Water and CSIRO undertook an environmental impact assessment and review of land and marine effluent disposal options, which included ambient water quality monitoring, biological monitoring, bioaccumulation studies and toxicity testing of existing effluent to assess the nature and magnitude of the environmental effects. This paper presents data from the toxicity monitoring programs since 2001. Chronic toxicity testing using macroalgal germination and cell division (H. banksii), microalgal growth rate (Nitzschia closterium) and scallop larval development (Chlamys asperrima), confirmed that ammonia was the major cause of effluent toxicity. Results from this toxicity monitoring program were used to develop action trigger values for toxicity for each species, which were then used in a refined monitoring program in 2005-2007. An upgrade of the ETP is in progress to improve nitrification/denitrification in order to reduce ammonia concentrations and the toxicity of the effluent. Toxicity testing with a simulated upgraded effluent confirmed that ammonia concentrations and toxicity were reduced. Estimated "safe" dilutions of effluent, calculated using species sensitivity distributions, decreased from 1:140-300 for existing ETP effluent to 1:20 for nitrified effluent, further confirming that treatment improvements should reduce the impact on marine biota in the vicinity of the discharge.  相似文献   

11.
The precise application of risk assessment can lead to different conclusions about risk depending on how species are grouped in the assessment. We compared the use of different risk assessment methods for three different classes of pesticide, the herbicide diuron, the fungicide chlorothalonil, and the insecticide permethrin for marine and estuarine species. Permethrin was the most toxic pesticide to marine and estuarine crustaceans. Diuron was the most toxic pesticide to algae, and chlorothalonil was most toxic to early life stages of molluscs and other invertebrates. Toxicity data (96 h LC50/EC50 values) were analyzed using a probability distribution on the ranked toxicity values and 10th centile values were calculated based on different groups of species and for all species combined. Our results indicate that an assessment of risk based on smaller taxonomic groups can be informative, especially for pesticides of less specific modes of action such as chlorothalonil.  相似文献   

12.
Three phase procedures of toxicity identification evaluation (TIE) were conducted using Daphnia magna to identify the toxicant in effluent discharged from a chemical plant in Nanjing. Phase I toxicity characterization procedures suggested nonpolar organic compounds were responsible for the whole effluent toxicity. In phase II toxicity identification procedures, the effluent toxicity was recovered by C18 solid-phase extraction and concentration steps. Gas chromatography–mass spectrometry (GC/MS) of the concentrate indicated that benzopyrone and phenol were present in the effluent at sufficient concentrations to cause the effluent toxicity. In phase III toxicity confirmation procedures, benzopyrone and phenol mixture tests and mass balance determinations with toxic units (TU) confirmed these compounds were the key toxicants accounting for 44.6% and 32.9% of the whole effluent toxicity, respectively.  相似文献   

13.
An overview of toxicant identification in sediments and dredged materials   总被引:1,自引:0,他引:1  
The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation's waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. Knowledge of which contaminants affect benthic systems allows managers to link pollution to specific dischargers and prevent further release of toxicant(s). In addition, identification of major causes of toxicity in sediments may guide programs such as those developing environmental sediment guidelines and registering pesticides, while knowledge of the causes of toxicity which drive ecological changes such as shifts in benthic community structure would be useful in performing ecological risk assessments. To this end, the US Environmental Protection Agency has developed tools (toxicity identification and evaluation (TIE) methods) that allow investigators to characterize and identify chemicals causing acute toxicity in sediments and dredged materials. To date, most sediment TIEs have been performed on interstitial waters. Preliminary evidence from the use of interstitial water TIEs reveals certain patterns in causes of sediment toxicity. First, among all sediments tested, there is no one predominant cause of toxicity; metals, organics, and ammonia play approximately equal roles in causing toxicity. Second, within a single sediment there are multiple causes of toxicity detected; not just one chemical class is active. Third, the role of ammonia is very prominent in these interstitial waters. Finally, if sediments are divided into marine or freshwater, TIEs perforMed on interstitial waters from freshwater sediments indicate a variety of toxicants in fairly equal proportions, while TIEs performed on interstitial waters from marine sediments have identified only ammonia and organics as toxicants, with metals playing a minor role. Preliminary evidence from whole sediment TIEs indicates that organic compounds play a major role in the toxicity of marine sediments, with almost no evidence for either metal or ammonia toxicity. However, interpretation of these results may be skewed because only a small number of interstitial water (n = 13) and whole sediment (n = 5) TIEs have been completed. These trends may change as more data are collected.  相似文献   

14.
The acute toxicity of copper to the marine copepod Acartia clausi was determined by means of static bioassays. Natural copepod assemblages from two different locations, one from an area polluted with industrial effluents and domestic wastes and another from a relatively uncontaminated area, were compared. Results of metal toxicity tests expressed as 48 h LC50 values indicate a significant difference in the tolerance of copper between the two populations, with the LC50 of the pollution-adapted population higher than that of the population from the uncontaminated area.  相似文献   

15.
Irgarol 1051 (2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an algaecide commonly used in antifouling paints. It undergoes photodegradation which yields M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) as its major and most stable degradant. Elevated levels of both Irgarol and M1 have been detected in coastal waters worldwide; however, ecotoxicity effects of M1 to various marine autotrophs such as cyanobacteria are still largely unknown. This study firstly examined and compared the 96 h toxicities of Irgarol and M1 to the cyanobacterium Chroococcus minor and two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana. Our results suggested that Irgarol was consistently more toxic to all of the three species than M1 (96 h EC50 values: C. minor, 7.71 microug L(-1) Irgarol vs. > 200 microg L(-1) M1; S. costatum, 0.29 microg L(-1) Irgarol vs. 11.32 microg L(-1)M1; and T. pseudonana, 0.41 microg L(-1) Irgarol vs. 16.50 microg L(-1)M1). Secondly, we conducted a meta-analysis of currently available data on toxicities of Irgarol and M1 to both freshwater and marine primary producers based on species sensitivity distributions (SSDs). Interestingly, freshwater autotrophs are more sensitive to Irgarol than their marine counterparts. For marine autotrophs, microalgae are generally more sensitive to Irgarol than macroalgae and cyanobacteria. With very limited available data on M1 (i.e. five species), M1 might be less toxic than Irgarol; nonetheless this finding warrants further confirmation with additional data on other autotrophic species.  相似文献   

16.
The present work investigated the biosorption of nickel from synthetic and electroplating industrial effluents using a green marine algae Ulva reticulata. Preliminary batch results imply that pH 4.5 was optimum for nickel uptake and the isotherm experiments conducted at this pH condition indicated that U. reticulata can biosorb 62.3 mg g–1 nickel ions from synthetic solutions, according to the Langmuir model. Desorption was effective and practical using 0.1 M CaCl2 (pH 2.5, HCl) and the biomass was regenerated and reused for three cycles. Continuous biosorption experiments were performed in an upflow packed column (2 cm I.D and 35 cm height). Among the two electroplating effluents used, effluent‐1 is characterized by excess co‐ions and high nickel ion content. This influenced the column nickel uptake with U. reticulata exhibiting 52.1 mg g–1 in the case of effluent‐1 compared to 56.5 mg g–1 in the case of synthetic solution. On the other hand U. reticulata performed well in effluent‐2 with uptakes of 53.3 and 54.3 mg g–1 for effluent‐2 and synthetic solution, respectively. Mathematical modeling of column experimental data was performed using nonlinear forms of the Thomas‐ and modified dose‐response models, with the latter able to simulate breakthrough curves with high correlation coefficients.  相似文献   

17.
Temporal changes in the composition of soft bottom macrobenthic assemblages at Reunion Island (Southwest Indian Ocean) were studied in the context of a long-term environmental monitoring programme studying the impacts of effluents of industrial sugar cane refineries that are transferred to shallow and deep coastal environments by different pathways: surface discharge and deep underground injection. Seven stations (between 20 and 160 m depth) were surveyed between 1994 and 2003 on the industrial zone. One additional station was surveyed on a reference site. Spatio-temporal changes in the composition of macrobenthic communities were assessed using several diversity indices, ABC curves, MDS and associated ANOSIM tests and biotic indices. Among the 171 taxa recorded, polychaetes were dominant (89 species), followed by crustaceans and molluscs. The analysis of spatial changes in the composition of macrobenthos showed the existence of distinct benthic communities along the depth gradient. Temporal changes in macrobenthos composition were most prominent at the shallowest station. They mainly corresponded to the decline of several initially dominant taxa and the increase of the Eunicid polychaete Diopatra cuprea. This station further showed increasing macrofaunal abundance, biomass and sediment organic content over time, concomitant with decreasing sediment grain sizes. In deeper environments, temporal changes were much smaller. Macrofaunal abundance and species richness increased progressively, suggesting a moderate impact on benthic ecosystems resulting from slight enrichments due to effluents rich in organic matter. Our results highlight an original response to disturbance pattern involving opportunistic Eunicidae species (D. cuprea) not previously described. Moreover, they allow for the comparison of the impact on macrofauna caused by industrial effluents exported by two distinct and different pathways in a tropical coastal high-energy marine environment.  相似文献   

18.
Since 1990s, various booster biocides have been increasingly used as substitutes of organotins. However, knowledge about their toxicities on tropical/sub-tropical marine species is significantly lacking. This study comprehensively investigated the acute toxicities of copper, tributyltin (TBT), and five commonly used booster biocides including Irgarol, diuron, zinc pyrithione (ZnPT), copper pyrithione (CuPT) and chlorothalonil on the growth or survival of 12 marine species in which eight of them are native species of subtropical Hong Kong. We found that Irgarol was more toxic than TBT on the growth of autotrophic species. The toxicity of CuPT was comparable to that of TBT on almost all test species, while it showed higher toxicity than TBT on medaka fish larvae. As the usage of these biocides is expected to further increase worldwide, accurate assessments of their ecological risks are required for better informed decision on their management. This study provided useful datasets for such purposes.  相似文献   

19.
《Marine pollution bulletin》2009,58(6-12):250-254
Feminization of fish has been reported throughout the world in freshwater and marine systems. While the population impacts are conflictive, enough negative effects warrant additional research into causation. In order to ascertain the identities of specific feminizing agents, variants of toxicity identification evaluations (TIEs) have been employed. The majority of these evaluations have utilized in vitro estrogen receptor-based cell-lines to identify chromatographic fractions that possess biological activity from predominately wastewater derived from municipal treatment facilities and have concluded that synthetic and natural estrogens are the primary cause for feminization of fish. This paper will focus on three aquatic systems impacted by wastewater originating from purely domestic, and industrial/domestic secondary treatment systems. Wastewater and sediment extracts were evaluated by in vitro and in vivo biological responses in a TIE fractionation design. While in vitro responses tended to mirror in vivo responses in purely domestic wastewater systems, in vitro responses tended to severely underestimate in vivo estrogenic activity when normalized to estradiol equivalents in more complex systems. TIE fractionation schemes using in vivo biological responses failed to indicate any relationship to steroids in either wastewater or sediment extractions. These data consistently support the view that mechanisms other than direct ER binding and activation by toxicants may be important in the feminization of fish particularly residing in habitats that receive complex wastewater or agricultural effluents.  相似文献   

20.
Feminization of fish has been reported throughout the world in freshwater and marine systems. While the population impacts are conflictive, enough negative effects warrant additional research into causation. In order to ascertain the identities of specific feminizing agents, variants of toxicity identification evaluations (TIEs) have been employed. The majority of these evaluations have utilized in vitro estrogen receptor-based cell-lines to identify chromatographic fractions that possess biological activity from predominately wastewater derived from municipal treatment facilities and have concluded that synthetic and natural estrogens are the primary cause for feminization of fish. This paper will focus on three aquatic systems impacted by wastewater originating from purely domestic, and industrial/domestic secondary treatment systems. Wastewater and sediment extracts were evaluated by in vitro and in vivo biological responses in a TIE fractionation design. While in vitro responses tended to mirror in vivo responses in purely domestic wastewater systems, in vitro responses tended to severely underestimate in vivo estrogenic activity when normalized to estradiol equivalents in more complex systems. TIE fractionation schemes using in vivo biological responses failed to indicate any relationship to steroids in either wastewater or sediment extractions. These data consistently support the view that mechanisms other than direct ER binding and activation by toxicants may be important in the feminization of fish particularly residing in habitats that receive complex wastewater or agricultural effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号