首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
A one-dimensional grid-level model including longwave radiative transfer and a level-4 second-order turbulent transfer closure which contains prognostic equations for turbulent quantities, is used to study the physics and dynamics of inversion-capped marine stratocumulus clouds.A set of numerical experiments had been performed to examined the role of sea surface temperature, large-scale vertical velocity, wind speed, and vertical wind shear in the formation and the structure of low-level clouds. For a given sea surface and geostrophic wind speed, stratocumulus clouds can grow higher with smaller large-scale subsidence as less dry air entrains into the cloud. Clouds grow higher with higher sea surface temperature for a given geostrophic wind speed and large-scale subsidence as a result of enhanced moist convection. In high wind speeds, the entire cloud deck is lifted up because of larger surface energy flux. In the budget studies of the turbulent kinetic energy (TKE), the buoyancy term is a major source term when the wind speed and the vertical shear are small across the inversion top. When the wind speed and the vertical wind shear across the inversion top become large, the mixed layer is decoupled into a cloud and a subcloud layer. In the TKE budget studies, the shear generation term becomes an important term in the budgets of the TKE and the variance of vertical velocity.  相似文献   

2.
By using the cloud echoes first successfully observed by China's indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows.(1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds,and it can reveal the microscopic structure and small-scale changes of clouds.(2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar reflectivity factor is larger(over –10 dBZ).(3) The radar's sensitivity is comparatively higher because the minimum radar reflectivity factor is about–35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio(LDR) of stratocumulus(commonly –11 to –14 dBZ; decreases with increasing turbulence).(4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle effective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar reflectivity factor.  相似文献   

3.
Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.  相似文献   

4.
This paper examines the springtime cloud properties in the Taiwan Strait (TS), with emphases on their dependence on synoptic controls and local processes, using a suite of in situ and remote sensing observations. Cloud properties in the TS are inferred from a combination of MODIS and in situ observations and further classified into two synoptic conditions: continental cold air surge and frontal system. The study reveals a predominance of synoptic-scale controls in regulating the cloud properties in the TS. The sensitivity of clouds to the local thermodynamic mechanisms as well as the underlying surface conditions is fundamentally dependent on synoptic-scale flow patterns. The springtime clouds over the TS are commonly a mixture of stratocumulus and alto clouds. More precisely, there is a preponderance of stratocumulus over the strait. A preferential occupancy of stratiform alto clouds is recognized during cold air surge, whereas vertical development of cloud layers (mostly the stratocumulus) is commonly observed with frontal passage. The most distinct difference between the local clouds formation associated with the two synoptic conditions is the suppression of very low cloud and fog along with cold air surge. Stratus clouds and fog are present within the northward prefrontal airflow from warmer to colder water sites, along with an increase in stability relating to lower altitudes of boundary layer clouds. Although the rainfall occurrences are about the same for both synoptic conditions, the frontal rain amounts are larger on average.  相似文献   

5.
A simple closure scheme for nocturnal stratocumulus is proposed. The scheme is formulated in conserved variables. Cloud fraction and cloud water amount are diagnosed assuming a top-hat distribution for total water. Conversion of cloud water into rain water is parameterized in terms of cloud water and the incoming rain flux. Turbulence transport in the cloud layer is accounted for by a first-order vertical diffusion scheme with a profile-type diffusivity. The length scale corresponds to the thickness of the cloud layer. The turbulent velocity scale is directly related to the long wave radiative flux divergence in the cloud. Entrainment at cloud top is implicitly treated by extending the in-cloud mixing profile slightly beyond cloud top. The excess height is derived from the buoyancy frequency at cloud top and a radiative–convective velocity scale. The scheme is capable of simulating realistic profiles of the conserved variables and cloud parameters for a case of nocturnal stratocumulus prepared on the basis of ASTEX data.  相似文献   

6.
利用辽宁阜新国家站(121.7458°E,42.0672°N)的毫米波云雷达(8 mm)和微雨雷达(12.5 mm)对2020年8月12-13日东北冷涡影响下的一次降水过程进行了观测,分析了云降水的垂直结构特征并探讨了降水机制。结果表明:本次过程中,云水平方向发展不均匀,以层状云和层积混合云为主,云内有时还嵌有对流泡。云降水阶段性变化明显,先后出现了层状云降水、层积混合云降水和对流云降水。层状云降水和层积混合云降水均表现出明显的亮带特征,但层积混合云降水的雷达回波强度、回波顶高和降水强度明显大于层状云降水。对流云降水的雷达回波会因强降水而产生明显衰减,因此回波顶高不能表示出实际的云顶情况。层状云降水阶段,云雷达反射率随高度降低增长缓慢,雨滴在下落过程中受蒸发和碰并的共同作用,反射率降低。与层状云降水相比,层积混合云降水的碰并效应强,且由于前期降水对近地面的增湿作用,使云下蒸发弱。对流云降水阶段,反射率的增长主要发生在冰水混合层,有利于大滴的产生,拓宽了云滴谱,提高了碰并效率。  相似文献   

7.
Stratocumulus is often present offshore of Peru and northern Chile and exists at the top of a cool, moist and well-mixed marine boundary layer (MBL) under a marked temperature inversion maintained by large-scale subsidence. The subtropical MBL and stratocumulus has been the focus of many recent studies, but mid-latitude systems can exert a strong influence. However, this connection is not well established due to debatable model results and few in situ measurements south of 20°S. During a 2-week field campaign in August 2011 at Robinson Crusoe Island (~700 km offshore at 33.6°S), radiosondes were launched to observe the response of the MBL to mid-latitude synoptic forcing. During the observation period a broad, slow-moving cutoff low (COL) passed over the region. Other observations include COSMIC GPS, infrared satellite imagery, TRMM radar reflectivity, and operational radiosondes from the Chilean weather service. A numerical simulation is included to diagnose the synoptic features. The inversion prior to the COL was maintained and lifted above 5 km as the COL passed over the island. Soon after the COL center passed the island, the MBL top did not descend or reform near the surface and then deepen, but rather an inversion reformed at ~2.7 km. Using a variety of datasets, the height of the reformation of the inversion is related to the cloud top height of the scattered shallow cumulus convection under the COL, which coincides with the level of maximum convergence of the vertical velocity.  相似文献   

8.
《Atmospheric Research》2008,87(3-4):297-314
This paper addresses the sensitivity of the relationships between radar reflectivity (Z) and liquid water content (M) for liquid water clouds to microphysical drizzle parameters by means of simulated radar observation at a frequency of 3 GHz of modeled cumulus clouds. A power law relationship for non drizzling clouds with water content as high as 3 gm 3: Zc = 0.026 Mc1.61 is numerically derived and agreed with previous empirical relationships relative to cumulus and stratocumulus. This relationship is then used to explore the influence of drizzle on the correlation between radar reflectively and water content. Due to their large diameters with respect to cloud droplets, drizzle sized drops dominate radar reflectivity but do not carry the cloud water content so that reflectivity and liquid water content are expected to be not correlated in clouds containing drizzle. It is shown that for congestus or extreme congestus cumuli, microphysical conditions for which the ZcMc relationship can be used with a tolerance of 5 and 10% are provided whereas for humilis or mediocris cumuli, the presence of drizzle breaks down the ZcMc relationship whatever the situations.  相似文献   

9.
Influence of drizzle on ZM relationships in warm clouds   总被引:1,自引:0,他引:1  
This paper addresses the sensitivity of the relationships between radar reflectivity (Z) and liquid water content (M) for liquid water clouds to microphysical drizzle parameters by means of simulated radar observation at a frequency of 3 GHz of modeled cumulus clouds. A power law relationship for non drizzling clouds with water content as high as 3 gm− 3: Zc = 0.026 Mc1.61 is numerically derived and agreed with previous empirical relationships relative to cumulus and stratocumulus. This relationship is then used to explore the influence of drizzle on the correlation between radar reflectively and water content. Due to their large diameters with respect to cloud droplets, drizzle sized drops dominate radar reflectivity but do not carry the cloud water content so that reflectivity and liquid water content are expected to be not correlated in clouds containing drizzle. It is shown that for congestus or extreme congestus cumuli, microphysical conditions for which the ZcMc relationship can be used with a tolerance of 5 and 10% are provided whereas for humilis or mediocris cumuli, the presence of drizzle breaks down the ZcMc relationship whatever the situations.  相似文献   

10.
Summary This study examines the impact of ice formation and growth processes on freezing drizzle formation in stably stratified clouds. In particular we investigate the reason why freezing drizzle is rarely observed in clouds with top temperatures less than –15°C. We also investigate the sensitivity of freezing drizzle formation to the Hallett Mossop secondary ice process (Hallet and Mossop, 1974). The evaluation is performed by simulating cloud formation over a two-dimensional idealized mountain using a detailed microphysical scheme. The height and width of the two-dimensional mountain were designed to produce an updraft pattern with extent and magnitude similar to documented freezing drizzle cases. The simulations show that: (i) drizzle formation is very sensitive to the ice crystal concentration, with a significant reduction in the area over which drizzle forms and the maximum drizzle water content as the cloud top temperature decreases below –10°C, and (ii) secondary ice crystal formation has a significant effect on drizzle formation at cloud top temperatures below –10°C.The above two factors are likely the main cause for the lack of freezing drizzle at cloud top temperatures less than –15°C. We also found that neglecting the depletion of ice forming nuclei resulted in considerable overestimation of the ice crystal concentration and suppression of drizzle, even for the –10°C case.  相似文献   

11.
Extended sheets of stratocumulus (Sc) in the upper part of the atmospheric boundary layer (ABL) often occur under appropriate meteorological conditions. These cloud decks are important both in climate studies and in weather forecasting. We review the current knowledge of the turbulent structure of the ABL capped by a cloud deck, in the light of recent observations and model studies. The most important physical processes determining this structure are longwave radiative cooling at cloud top, shortwave radiative wanning by absorption in the cloud, surface buoyancy flux, and wind shear in the ABL. As a result, turbulence can cause entrainment against the buoyancy jump at cloud top. In cases where only longwave radiative fluxes and surface buoyancy fluxes are important, the turbulent structure is relatively well understood. When shortwave radiative fluxes and/or wind shear are also important, the resulting turbulent structure may change considerably. A decoupling of the cloud from the sub-cloud layer or of the top of the cloud from the rest of the ABL is then regularly observed. In no cases are the details of the entrainment at cloud top understood well enough to derive a relatively simple formulation that is consistent with observations. Cloud-top entrainment instability may lead to the break-up of a cloud deck (but also to cloud deepening). The role of mesoscale circulations in determining fractional cloudiness is not yet well understood.  相似文献   

12.
In the `First Lagrangian' of the Atlantic Stratocumulus Experiment(ASTEX), a cloudy air mass was tracked as it was advected by thetrade winds toward higher sea surface temperatures. In this study,a full diurnal cycle observed during this experiment is simulated andthe impact of the precipitation parameterization is examined. The modelwe use is the one dimensional version of the hydrostatic primitiveequation model MAR (Modéle Atmosphérique Régional) developed at the Université catholique de Louvain (UCL).It includes an E- turbulence closure, a wide-band formulationof the radiative transfer, and a parameterized microphysical schemeallowing partial condensation. The model realistically reproducesthe diurnal clearing of the cloud layer as well as the formation ofcumulus clouds under the stratocumulus deck. Nevertheless, as thesurface warms and the boundary layer becomes more convective,the simulation progressively differs from the observed evolution.Further experiments are carried out with different precipitationparameterizations commonly used in mesoscale modelsand general circulation models (GCMs).A strong sensitivity of the simulated liquid water path evolution isfound. The impact on the surface energy flux and the solar fluxreflected by the cloud is also examined. For both fluxes averagedover 24 hours, differences as large as 20 W m-2 are obtainedbetween the various simulations. Low cloudiness covers large areasover the ocean and such errors on the reflected solar flux may stronglyaffect the Earth's radiative budget in GCM simulations. We estimatethat the impact on the globally averaged outgoing solar flux could beas large as 5 W m-2. Furthermore, when atmospheric models arecoupled to ocean models, errors in the surface energy exchanges mayinduce significant drift in the simulated climate.  相似文献   

13.
层积云覆盖的海洋边界层云详细微物理过程的数值模拟   总被引:1,自引:0,他引:1  
文中建立了一个含显式分档的云微物理模式和辐射传输模式的一维 3阶湍流闭合模式 ,该模式可用于研究海洋边界层云中气溶胶和云的相互作用过程 ,同时提出了一种新的动力模式和微物理模式耦合方法 ,该方法可使动力模式中液态水相关项可以直接由微物理模式变量计算得到。作为模式的初步应用模拟了 2 0 0 1年APEX/ACE Asia在西太平洋上所观测到的一个个例。模拟结果和观测资料比较表明该模式基本上模拟出层积云覆盖的海洋边界层的基本结构  相似文献   

14.
张苏平  王媛  衣立  刘海坤  王倩 《大气科学》2017,41(2):227-235
由于缺乏海上现场观测,对天气尺度扰动下,海表面温度锋 (海洋锋) 对海洋大气边界层 (MABL) 垂直结构和MABL内海洋性低云 (marine stratus) 的影响研究较少。2014年4月12日,中国海洋大学东方红2号科学考察船在黑潮延伸体海区的海洋锋附近捕捉到一次层积云的迅速发展。在比较稳定的天气形势下,由暖水侧向北穿越海洋锋时,云底和云顶高度升高,云区范围迅速扩大。本文利用多种大气-海洋联合观测数据,结合卫星观测和再分析资料,对此次层积云迅速发展的机理进行了综合分析。结果表明,在海上低压后部西北风控制下,在海洋锋的暖水侧 (下风方) 形成热通量大值中心和低压槽,有助于高空西风动量下传,进而又使得海气界面热通量增加,这种正反馈效应为MABL内混合层厚度加大和云底/顶高度在海洋锋的下风方升高提供有利背景条件。4月12日09:00~12:00(协调世界时),来自日本本州岛陆地的低空暖平流到达该热通量中心上空,暖平流与热通量中心的共同作用,导致该时段近海面暖中心强度异常增加,MABL中静力不稳定层加深和低压槽发展,综合作用的结果使得混合层厚度明显加深,云底高度升高,云区迅速发展。本研究有助于理解在复杂大气背景扰动下MABL对海洋强迫的响应机理。  相似文献   

15.
In this study, we evaluate the ability of the Weather Research and Forecasting model to simulate surface energy fluxes in the southeast Pacific stratocumulus region. A total of 18 simulations is performed for the period of October to November 2008, with various combinations of boundary layer, microphysics, and cumulus schemes. Simulated surface energy fluxes are compared to those measured during VOCALS-REx. Using a process-based model evaluation, errors in surface fluxes are attributed to errors in cloud properties. Net surface flux errors are mostly traceable to errors in cloud liquid water path (LWPcld), which produce biases in downward shortwave radiation. Two mechanisms controlling LWPcld are diagnosed. One involves microphysics schemes, which control LWPcld through the production of raindrops. The second mechanism involves boundary layer and cumulus schemes, which control moisture available for cloud by regulating boundary layer height. In this study, we demonstrate that when parameterizations are appropriately chosen, the stratocumulus deck and the related surface energy fluxes are reasonably well represented. In the most realistic experiments, the net surface flux is underestimated by about 10 W m?2. This remaining low bias is due to a systematic overestimation of the total surface cooling due to sensible and latent heat fluxes in our simulations. There does not appear to be a single physical reason for this bias. Finally, our results also suggest that inaccurate representation of boundary layer height is an important factor limiting further gains in model realism.  相似文献   

16.
The objective of this study is to investigate the quality of clouds simulated by the National Centers for Environmental Prediction global forecast system (GFS) model and to examine the causes for some systematic errors seen in the simulations through use of satellite and ground-based measurements. In general, clouds simulated by the GFS model had similar spatial patterns and seasonal trends as those retrieved from passive and active satellite sensors, but large systematic biases exist for certain cloud regimes especially underestimation of low-level marine stratocumulus clouds in the eastern Pacific and Atlantic oceans. This led to the overestimation (underestimation) of outgoing longwave (shortwave) fluxes at the top-of-atmosphere. While temperature profiles from the GFS model were comparable to those obtained from different observational sources, the GFS model overestimated the relative humidity field in the upper and lower troposphere. The cloud condensed water mixing ratio, which is a key input variable in the current GFS cloud scheme, was largely underestimated due presumably to excessive removal of cloud condensate water through strong turbulent diffusion and/or an improper boundary layer scheme. To circumvent the problem associated with modeled cloud mixing ratios, we tested an alternative cloud parameterization scheme that requires inputs of atmospheric dynamic and thermodynamic variables. Much closer agreements were reached in cloud amounts, especially for marine stratocumulus clouds. We also evaluate the impact of cloud overlap on cloud fraction by applying a linear combination of maximum and random overlap assumptions with a de-correlation length determined from satellite products. Significantly better improvements were found for high-level clouds than for low-level clouds, due to differences in the dominant cloud geometry between these two distinct cloud types.  相似文献   

17.
风云二号静止卫星上装载有可见光、水汽、中长波红外等探测通道,其中红外通道资料可提供卫星云顶温度数据。基于FY-2F静止卫星云顶温度资料,结合局地实时探空数据对北京南郊和朝阳站点上空云层进行云高反演,并展开与地基毫米波云雷达探测云顶高关系的对比,分析3种不同云厚(薄云、适中、厚云)条件下的云高观测结果。研究结果表明,二者云顶高匹配度受几何云厚的影响,其吻合度呈现出厚云最佳,薄云最差的特征。  相似文献   

18.
During the Dynamics and Chemistry of the MarineStratocumulus (DYCOMS) experiment in July–August 1985, the NCAR Electra aircraft flew a series of flight legs just at the top of the marinestratocumulus cloud decks that cap the mixed layer off the coast of southernCalifornia. Because of the corrugated structure of the cloud-top, the aircraft, which was flown at a nearly constant level and adjusted only to maintain its altitude at the average cloud-top height, was alternately within and above the clouds – roughly half the time in each domain. These legs were used to examine the structure of the cloud-top by compositing the segments on either side of the cloud/clear-air interface, which was identified by the transitions of liquid water measured by the Forward Scattering Spectrometer Probe (either increasing or decreasing) through a threshold of 0.04 × 10-3 kg m-3.An equivalent vertical distance (EVD) from the cloud-top was obtained from the horizontal flight legs by estimating the average slope of the cloud-top from the cloud-top radiation temperature. The results show that a near discontinuity occurs in variables across cloud top over an EVD of 0.3 m, but that above this, the air has already been modified by boundary-layer air. Thus, cloud-top is not the limit of mixing of boundary-layer air. This mixing may extend to tens of metres or more. The bulk Richardson number in the vicinity of cloud-top increases from near zero within the cloud to about 1.2 at an EVD of 3–6 m above cloud. Fluctuations of the three velocity components within cloud are nearly equal; above cloud the vertical component structure function is about half the horizontal components. The scalar structure functions are about an order of magnitude higher above cloud than in cloud. The structure parameters of temperature and humidity measured just below cloud-top agree reasonably well with predicted values based on a previously-developed model for the clear convective boundary layer. Above cloud, the scalar structure parameters are much larger, but their interpretation is questionable, since this region does notcontain isotropic turbulence.  相似文献   

19.
利用2007~2010年北半球夏季(6~8月)CloudSat卫星搭载的云廓线雷达(Cloud Profile Radar,CPR)探测结果对0°~60°N区域单层、双层和三层云系的水平分布、垂直结构特征及各云层云类组成、云水路径等物理量分布进行分析。云量的统计结果表明CPR探测的单层、双层和三层云系的云量分别为36.63%、8.26%和1.40%,云量的水平分布表明其高值区主要位于对流旺盛区域,且高值区的云层云顶高、厚度大,而低值区则多位于副热带高压区域。对不同云类的出现频率统计分析结果表明,单层云系中各云类的出现频率相近;多层云系的上层以卷云为主,下层以层积云为主。对比海陆差异发现洋面卷云和层积云的出现频率显著高于陆面,但高层云和高积云的出现频率低于陆面。云水路径分析表明,单层云系的冰水路径和液水路径均最大,而在多层云系中云层越高、厚度越大、冰水路径越大,液水路径则随着云层的降低增大。  相似文献   

20.
A closed-cell marine stratocumulus case during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) aircraft field campaign is selected to examine the heterogeneities of cloud and drizzle microphysical properties and the aerosol-cloud-precipitation interactions. The spatial and vertical variabilities of cloud and drizzle microphysics are found in two different sets of flight legs: Leg-1 and Leg-2, which are parallel and perpendicular to the cloud propagation, respectively. The cloud along Leg-2 was close to adiabatic, where cloud-droplet effective radius and liquid water content linearly increase from cloud base to cloud top with less drizzle. The cloud along Leg-1 was sub-adiabatic with lower cloud-droplet number concentration and larger cloud-droplet effective, but higher drizzle droplet number concentration, larger drizzle droplet median diameter and drizzle liquid water content. The heavier drizzle frequency and intensity on Leg-1 were enhanced by the collision-coalescence processes within cloud due to strong turbulence. The sub-cloud precipitation rate on Leg-1 was significantly higher than that along Leg-2. As a result, the sub-cloud accumulation mode aerosols and CCN on Leg-1 were depleted, but the coarse model aerosols increased. This further leads to a counter-intuitive phenomenon that the CCN is less than cloud-droplet number concentration for Leg-1. The average CCN loss rates are ?3.89 \begin{document}$\mathrm{c}{\mathrm{m}}^{-3}\;{\mathrm{h}}^{-1}$\end{document} and ?0.77 \begin{document}$\mathrm{c}{\mathrm{m}}^{-3}\;{\mathrm{h}}^{-1}$\end{document} on Leg-1 and Leg-2, respectively. The cloud and drizzle heterogeneities inside the same stratocumulus can significantly alter the sub-cloud aerosols and CCN budget. Hence it should be treated with caution in the aircraft assessment of aerosol-cloud-precipitation interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号