首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have employed 10 digital records and computed the spectral magnitude and the seismic radiated energy for 18 large earthquakes (M s≥6) occurred in Eur-asian belt during 1986–1989. The nine digital stations (CD-SN) distribute all over China and one in Germany. The spectral magnitudes of various period have different stability among stations. The stability is better for maximum spectral magnitudemi and seismic radiated energyE, their differences among stations are smaller, especially for the stations where the ray path main penetrates the low mantle. But the stability of corner period is usually not good. The relation between seismic radiated energy and seismic moment magnitudeM w is lg (E)=1.5Mw+c, wherec is a constant. The maximum spectral magnitudemi=M w+0.1, it is consistant with theoretical prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 418–426, 1993. This work supported by the Deutsche Forschungsgemeinschaft, Bonn, F. R. Germany. The support is grateful acknowledge.  相似文献   

2.
2014年8月3日鲁甸地震和10月7日景谷地震具有相似的矩震级和震源机制,但所造成的灾害却相差甚远。为考察地震辐射能量在这两次地震致灾过程中的作用,本文利用震中距6°~80°范围内记录了鲁甸地震的142个台站、记录了景谷地震的138个台站的宽频带地震记录,计算了累积宽频带体波震级m_(Bc)。结果表明鲁甸地震的m_(Bc)高于景谷地震,因此地震辐射能量的差别对解释两次地震灾害的差别有不可忽视的作用。  相似文献   

3.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

4.
Characteristicsofambientstressvaluesformicro-earthquakesequencesinWesternYunnan Earthquake Prediction Experimental FieldJia-Z...  相似文献   

5.
The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes (M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of − 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = − 0.4, when compared to the regional networks operating in West Bohemia (M c > 0.0). In the course of this work, the main temporal features (frequency–magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg–Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.  相似文献   

6.
We analyze the waveforms generated by the January 12, 2010 Haiti earthquake (Mw=7.0) for its source characteristics. A 60 to 25 km source model is retrieved by the Kikuchi and Kanamori finite source inversion technique that uses broadband teleseismic body wave records. The derived rupture model points out unilateral rupture propagation commenced at the eastern side of the fault plane where the major seismic moment release occurred. The rupture front propagated westward and terminated at a site where the largest aftershocks occurred. Our estimates yield a seismic moment of Mo=8.17×1019 N m released on a 60 km-long fault plane. A patch at the eastern side of the ruptured fault plane inferred as a region of maximum moment release.  相似文献   

7.
本文根据Aki等人提出的尾波理论,导出了地方震尾波水平分量与垂直分量的持续时间比的具体表达式: τ_H/τ_V=I_H/I_V(Q_H/Q_V)~(1/4)·B_H/B_V。该式表明,τ_H/τ_V的变化主要反映了震源体一定范围内,由于介质的各向异性而引起的尾波在不同方向上的激发及衰减能力的差异。本文还讨论了地震前τ_H/τ_V短临异常的物理机制,认为异常的产生与孕震期间介质内裂隙的出现和闭合有关。1986年门源6.4级地震和1975年海城7.3级地震前,τ_H/τ_V都有不同程度的短期低值异常及临震高值突跳。门源地震前后门源台记录的直达S波的最大振幅比A_(mH)/A_(mv)也有与尾波持续时间比类似的异常。最后通过对一些震例的分析,初步得到震级与异常时间的关系为M=0.657lnT+3.44。  相似文献   

8.
Follow Chen and Duda's model of spectral fall-off of (3, the dependence of peak parameters of ground motion, peak displacement dm, peak velocity vm and peak acceleration am, upon the environment stress (0-values are studied using near source seismic digital recordings for the sequence of the Wuding, Yunnan, M = 6.5 earthquake, in which, as a new thought, the peak parameters are assumed to be related to the medium Q-value. Three formulae for estimating the environment stress (0-values by the peak parameters of three types of ground motions are derived. Using these formulae, the environment stress (0-values are calculated for the sequence of the Wuding earthquake. The result show that (0-values calculated by the three formulae are constant largely, the averages of (0 are in the range of 5.0~35 MPa for most earthquakes. It belongs to the high-stress earthquakes sequence: the high-stress values are restricted to the relatively small area closely near to the epicenter of the main shock. The fine distribution structure for the contours of the environment stress (0-values is related closely to the strong aftershocks. The analysis of spatial and temporal feature of (0-values suggests that the earthquakes sequence in a rupture process generated at the specific intersection zone of seismo-tectonics under high-stress background.  相似文献   

9.
利用山东台网记录的长岛震群2017年2月14日—9月1日期间的波形与震相资料研究长岛地区非弹性衰减系数,得到该地区介质平均Q值与频率f的关系式为Q(f)=363.9f1.374 1。采用Moya等[1]提出的利用遗传算法联合反演得到长岛周边台站的场地响应,根据Brune模型震源参数计算公式求解长岛震群序列地震震源参数。结果显示,各个震源参数之间均存在一定的相关关系,地震矩随ML震级的增大而增加,地震矩与破裂半径R之间存在半对数关系,拐角频率fc随地震矩的增大而减少;长岛地震序列的应力降数值普遍偏小,最大不超过0.9MPa,这意味着长岛震源区整体构造应力较低,也可能指示长岛震群为低摩擦应力的断层作用;震源参数随时间的变化方面,整体而言,长岛震群地震应力降变化起伏很大,在M4.1地震发生前,拐角频率与应力降均发生快速下降后随即翻转上升的现象,证明在M4.1地震发生前震源区整体应力的挤压逐渐增强。  相似文献   

10.
On the basis of about 300 earthquake wave forms observed in the Shidian M S=5.9 sequences on April 12, 2001 recorded in Kunming Digital Seismic Network, the spectra of shear wave have been used to estimate the focal parameters of these earthquake sequences. The results show that within the magnitude range of 1.5–5.3, the seismic moments are 1010–1016 N·m, the corner frequencies are 0.2–0.8 Hz, radii of the focal rupture are 200–2 500 m and the stress drops are 0.1×105–20×105Pa. Through the statistical analyses of variation of corner frequency f c and stress drop Δσ with time, it is discovered that the average corner frequency of the foreshock sequences is obviously lower than that of the aftershock sequences. Contrarily, the average stress drops Δσ of the foreshock sequences are clearly higher than that of the aftershocks. It is considered that these variation characteristics of average corner frequency and stress drops before and after the main shock have index significance to the precursory information before a strong earthquake. The higher stress drops for the foreshock sequences show that the higher shear stresses have been stored in the area of main shock. After the main shock, most of the stresses have been released, so the aftershock sequences show a rupture process of lower stresses. Foundation item: Scientific and Technological Key Project of Yunnan Province (2001NG46)  相似文献   

11.
向阳  孙小龙  高小其  李娜 《中国地震》2017,33(4):563-574
基于新10井水位对九寨沟M_S7.0、精河M_S6.6地震的同震响应特征,分别利用水震波和潮汐分析法,反演得到了新10井水位在地震波作用期间和地震波作用前后含水层参数特征,探讨了2次地震引起的新10井同震响应变化机理。结果表明,新10井水位对九寨沟地震和精河地震具有不同的同震响应形态,利用水平流模型反演所得的新10井含水层渗透系数,在九寨沟地震时为61m/d,而在精河地震时为147m/d,表明地震波作用导致水平向的渗透性增强;利用垂向流模型反演得到的新10井含水层渗透系数,在2次地震之前约为49×10~(-5)m/d,而在地震之后约为18×10~(-5)m/d,表明地震波作用导致垂直向的渗透性减弱。因此,新10井水位的同震响应变化与地震波引起的含水层渗透率的改变有关。  相似文献   

12.
We analyze the strong motion accelerograms of the moderate (M w = 6.1), March 31, 2006, Darb-e-Astane earthquake of western Iran and also those of one of its prominently recorded, large (M w = 5.1) foreshock and (M w = 4.9) aftershock. (1) Using derived SH-wave spectral data, we first objectively estimate the parameters W o\mathit{\Omega} _{\rm o} (long period spectral level), f c (corner frequency) and Q(f) (frequency dependent, average shear wave quality factor), appropriate for the best-fit Brune ω  − 2 spectrum of each of these three events. We then perform a non-linear least square analysis of the SH-wave spectral data to provide approximate near-field estimates of the strike, dip, and rake of the causative faults and also the seismic moment, moment magnitude, source size, and average stress drop of these three events. (2) In the next step, we use these approximate values and an empirical Green’s function approach, in an iterative manner, to optimally model the strong ground motion and rupture characteristics of the main event in terms of peak ground acceleration/velocity/displacement and duration of ground shaking and thereby provide improved, more reliable estimates of the causative fault parameters of the main event and its asperities. Our near-field estimates for both the main moderate event and the two smaller events are in good conformity with the corresponding far-field estimates reported by other studies.  相似文献   

13.
Most of the present earthquake early warning systems are based on broadband or strong motion recordings. How-ever, the short-period instruments are still deployed. It is well-known that short-period recordings have saturation problems for large earthquakes when estimating the size of an earthquake. Thus, it is necessary to make clear the magnitude at which saturation starts to occur for the commonly used τc and Pd measurements, respectively. To investigate the possibility of using short-period seismic recordings for earthquake early warning, we conducted a simulated experiment using the strong motion data of the 1999 Chi-Chi earthquake sequence including its main shock and 31 aftershocks, with magnitude span from 4 to 7.6. The strong motion acceleration recordings were convolved with the instrument response of short-period seismographs in northern China to simulate short-period seismograms. Parameters τc and Pd from the first-three-second seismograms were calculated for the simulated short-period recordings and compared with that obtained by the original strong ground motion recordings. The result showed that to some extent, short-period recordings can be used for threshold earthquake early warning, while the magnitude saturation of Pd estimation can be up to 6.5, better than τc estimation.  相似文献   

14.
15.
In order to estimate the recurrence intervals for large earthquakes occurring in eastern Anatolia, this region enclosed within the coordinates of 36–42N, 35–45E has been separated into nine seismogenic sources on the basis of certain seismological and geomorphological criteria, and a regional time- and magnitude-predictable model has been applied for these sources. This model implies that the magnitude of the preceding main shock which is the largest earthquake during a seismic excitation in a seismogenic source governs the time of occurrence and the magnitude of the expected main shock in this source. The data belonging to both the instrumental period (MS≥ 5.5) until 2003 and the historical period (I0≥ 9.0 corresponding to MS≥ 7.0) before 1900 have been used in the analysis. The interevent time between successive main shocks with magnitude equal to or larger than a certain minimum magnitude threshold were considered in each of the nine source regions within the study area. These interevent times as well as the magnitudes of the main shocks have been used to determine the following relations:
fwawhere Tt is the interevent time measured in years, Mmin is the surface wave magnitude of the smallest main shock considered, Mp is the magnitude of the preceding main shock, Mf is magnitude of the following main shock, and M0 is the released seismic moment per year in each source. Multiple correlation coefficient and standard deviation have been computed as 0.50 and 0.28, respectively for the first relation. The corresponding values for the second relation are 0.64 and 0.32, respectively. It was found that the magnitude of the following main shock Mf does not depend on the preceding interevent time Tt. This case is an interesting property for earthquake prediction since it provides the ability to predict the time of occurrence of the next strong earthquake. On the other hand, a strong negative dependence of Mf on Mp was found. This result indicates that a large main shock is followed by a smaller magnitude one and vice versa. On the basis of the first one of the relations above and taking into account the occurrence time and magnitude of the last main shock, the probabilities of occurrence Pt) of main shocks in each seismogenic source of the east Anatolia during the next 10, 20, 30, 40 and 50 years for earthquakes with magnitudes equal 6.0 and 7.0 were determined. The second of these relations has been used to estimate the magnitude of the expected main shock. According to the time- and magnitude-predictable model, it is expected that a strong and a large earthquake can occur in seismogenic Source 2 (Erzincan) with the highest probabilities of P10 = 66% (Mf = 6.9 and Tt = 12 years) and P10 = 44% (Mf = 7.3 and Tt = 24 years) during the future decade, respectively.  相似文献   

16.
Source parameters of the earthquakes of the Baikal rift system   总被引:1,自引:0,他引:1  
The dynamic parameters of the earthquake source—the seismic moment, the moment magnitude, the source radius, the stress drop, and the amplitude of displacement—are determined by the amplitude Fourier spectra of the body shear waves (S-waves) for 62 earthquakes of the Baikal rift system with the energy class of K P = 9.1–15.7. In the calculations I used the classical Brune model. The seismic moment of the earthquakes being investigated changes from 3.65 × 1011 N m to 1.35 × 1018 N m, and the radii of earthquake sources vary from 390 m to 1.84 km. The values of the drop in stress Δσ grow with an increase in the seismic moment up to 1.7 × 108 Pa. For the group of weak earthquakes (M w = 1.7–3.3), extremely low values of the drop in stress 103–104 Pa are observed. The maximum amplitude of displacement in the source amounts to 5.95 m. The empirical equations between the seismic moment and the other dynamic parameters of the source are determined. The regional dependence of the seismic moment and energy class is obtained: log M 0 ± 0.60 = 1.03K P + 3.17. The character of the relationship between the seismic moment and the corner frequency indicates that the classical scaling law of the seismic spectrum for the earthquakes in question is not fulfilled. The obtained estimates of the dynamic parameters are in satisfactory agreement with the published data concerning the analogous parameters of the other rift zones, which reflects the general regular patterns of the destruction of the lithosphere and the seismicity in the extension zones of the lithosphere.  相似文献   

17.
In the light of the single scattering model of coda originating from local earthquakes, and based on the aftershock coda registered respectively at the 4 short period stations installed near the foci shortly after theM7.6 Lancang andM7.2 Gengma earthquakes, this paper has tentatively calculated the rate of amplitude attenuation and theQ c-value of the coda in the Lancang and Gengma areas using a newly-founded synthetic determination method. Result of the study shows the rate of coda amplitude attenuation demonstrates remarkable regional differences respectively in the southern and northern areas. The southern area presents a faster attenuation (Q c=114), whereas the northern area shows a slower attenuation (Q c=231). The paper also discusses the reasons causing such differences. Result of the study also suggests a fairly good linear relation between the coda source factorA o(f) and the seismic moment and the magnitude. Using the earthquake scaling law, the following formulas can be derived: lgM 0=lgA 0(f)+17.6,M D=0.67lgA 0(f)+1.21 and logM 0=1.5M D+15.79. In addition, the rates of amplitude attenuationβ s andβ m are respectively calculated using the single scattering and multiple scattering models, and the ratioβ sm=1.20−1.50 is found for the results respectively from the two models. Finally, the mean free pathL of the S-wave scattering in the southern and northern areas are determined to be 54 km and 122 km respectively by the relations which can distinguish between the inherentQ i and scatteringQ s, testify to this areas having lowQ-values correspond to stronger scatterings. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 71–82, 1992. This study is partly supported by the Seismological Science Foundation of the State Seismological Bureau of China, and the present English version of the paper is translated from its Chinese original by Wenyi Xia, Seismological Bureau of Yunnan Province.  相似文献   

18.
The use of characteristic period τc and peak displacement amplitude Pd of the initial P wave in earthquake early warning (EEW) was proposed by Wu and Kanamori 1, 2, 3 and 4. Here we apply this approach to strong-motion records from a building sensor array installed in Taitung County, Taiwan. This building was damaged during the 2006 Mw=6.1 Taitung earthquake with a peak ground velocity (PGV) of up to 38.4 cm/s at an epicentral distance of 14.5 km. According to our analysis, the peak displacement amplitude Pd is a better indicator for the destructiveness of an earthquake than τc because τc is more sensitive to the signal-to-noise ratio (SNR) than Pd. In accordance with previous studies, only the structurally damaging Taitung earthquake generated a Pd value larger than 0.5 cm (a threshold for identifying damaging events). Using Pd as an indicator for destructive earthquakes does not lead to missing or false alarms for EEW purposes.  相似文献   

19.
IntroductionIn the book Future CataS~ologr published in 1992, we proposed a viewpoiflt on using the"criterion of activity in quiescence" to predict big eathquake (MsZ7) (GUO, et al, 1992), and predicted in the book that in futore several years or in ten years a big earthquake (Ms27) will be possible to occur in the Zhongdian and nearby in Yunnan Province. In the 1994 nation-wide earthquake tendency consultation meeting we pointed out, once more, in the Zhongdian region of Yunnan Province…  相似文献   

20.
Two recent catastrophic earthquakes that struck the Marmara Region on 17 August 1999 (Mw=7.4) and 12 November 1999 (Mw=7.2) caused major concern about future earthquake occurrences in Istanbul and the Marmara Region. As a result of the preparations for an expected earthquake may occur around Istanbul region, an earthquake early warning system has been established in 2002 with a simple and robust algorithm, based on the exceedance of specified thresholds of time domain amplitudes and the cumulative absolute velocity (CAV) levels (Erdik et al., 2003 [1]). In order to improve the capability of Istanbul earthquake early warning system (IEEWS) for giving early warning of a damaging earthquake in the Marmara Region, we explored an alternative approach with the use of a period parameter (τc) and a high-pass filtered vertical displacement amplitude parameter (Pd) from the initial 3 s of the P waveforms as proposed by Kanamori (2005) [2] and Wu and Kanamori (2005) 3 and 4. The empirical relationships both between τc and moment magnitude (Mw), and between Pd and peak ground velocity (PGV) for the Marmara Region are presented. These relationships can be used to detect a damaging earthquake within seconds after the arrival of P waves, and can provide on-site warning in the Marmara Region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号