首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The formation and tectonic evolution of Philippine Sea Plate and KPR   总被引:5,自引:0,他引:5  
The Philippine Sea Plate has an extremely special tectonic background. As an oceanic plate, it is almost entirely surrounded by subduction zones with complex internal tectonic features. On the basis of enormous published literature, this paper offers a comprehensive overview of the tectonic and evolution history of the Philippine Basin and the Kyushu-Palau Ridge (KPR) in the Philippine Sea Plate, and discusses the geological features of KPR. Referring to relevant definitions of various "ridges" stipulated in United Nations Convention on the Law of the Sea, so the KPR is believed to be a remnant arc formed during the opening of the Parece Vela and Shikoku Basins in the Philippine Sea Plate. It is a submarine ridge on oceanic plate rather than a submarine elevation. And thus, it is not a natural component of the Japan continental margin.  相似文献   

2.
无震脊或海山链俯冲对超俯冲带处的地质效应   总被引:3,自引:1,他引:2  
鄢全树  石学法 《海洋学报》2014,36(5):107-123
全球海底分布着众多的无震脊或海山链,且在太平洋、印度洋及大西洋均存在靠近俯冲带的海岭。除小安德列斯弧外的巴拉克达脊和蒂勃朗脊起源自转换断层外,一般认为它们由与板块构造动力学迥异的地幔柱动力学所形成的。在板块汇聚边缘处,与扩张脊处所形成的正常洋壳一起,无震脊或海山链俯冲于陆缘弧或洋内弧之下,其对弧及弧后地区的地质效应(构造、地貌、地震以及岩浆作用等)有别于正常洋壳俯冲。无震脊或海山链的俯冲通常造成俯冲带地区的上驮板块的局部异常抬升、俯冲剥蚀作用效应的加强、海沟的向陆迁移以及地震强度的增加。同时,无震脊或海山链俯冲时,其携带的具富集地球化学特征的物质不仅影响着地幔地球化学,也对弧及弧后火山熔岩化学产生明显影响,并对超俯冲地区的热液矿床的形成产生重要影响。最后,本文指出了我国有关无震脊或海山链俯冲的可能的研究方向包括黄岩海山链俯冲对吕宋岛弧的可能影响、印度洋无震脊俯冲对青藏高原局部地区的影响,有我国学者参与的IODP344航次的研究对象——科科斯脊俯冲对哥斯达黎加地震成因的效应以及位于西太平洋地区靠近俯冲带的一些无震脊等。  相似文献   

3.
现代海底超镁铁质岩系热液系统与地质意义   总被引:1,自引:0,他引:1  
现代海底热液循环与洋中脊地质过程一直是国际洋中脊计划研究的热点.海底热液系统多数都与海底玄武岩及其水-岩反应直接相关,而一类与深海橄榄岩的产出及其蛇纹石化作用有关的海底热液系统——超镁铁质岩系热液系统,以具有高浓度H2和CH4异常而低SiO2浓度为显著特征,主要分布在慢速扩张大西洋中脊和超慢速扩张北冰洋Gakkel洋脊和西南印度洋中脊.超镁铁质岩系热液系统在流体组成、构造背景和硫化物成矿方面与玄武岩热液系统有很大差异,主要表现在地幔来源超镁铁质岩石的普遍出露、喷口流体高的H2和CH4异常以及硫化物中高Co/Ni比值.超镁铁质岩系热液系统的发现丰富了全球洋中脊热液系统的研究内容,对洋中脊地质过程、海底热液活动及其成矿作用研究具有重要意义.  相似文献   

4.
Much of the relief of the abyssal hills covering the ocean basins is believed to originate from faulting of oceanic crust at mid-ocean ridges. The timescale over which faults grow is controversial, however, with some authors arguing that faults continue to grow in places for 0.5 m.y. or more based on increasing relief of fault scarps with distance from ridge axes. We examine Deep Tow profiler records of the Galapagos Spreading Centre, in which basement reflections allow scarp relief to be measured beneath the sediment cover, and find that relief does not increase but decreases systematically to 40 km off-axis (1.5 Ma seafloor). Since reversal of fault offsets is unlikely in this tectonic setting, we interpret this result as indicating that variations in fault statistics could reflect temporal variations in the tectonic or volcanic state of the ridge crest, not necessarily progressive fault growth with age as previously assumed. Resolving the issue of fault longevity will therefore require independent data on the timing of fault growth and distribution of present growth activity. We suggest some possible alternative indicators of fault longevity and discuss more generally the implications of volcanic flows to studies of faulting at ridges.  相似文献   

5.
The application of advanced enhancement techniques for geophysical anomalies to global gravity (WGM2012) and magnetic (EMAG2) models sheds light on the complex tectonic evolution of the Rio Grande Rise (RGR) in the southern South Atlantic. Long wavelength Bouguer gravity lows indicate a thicker crust beneath of the ridge, whose nature can be related to a microcontinent or an excess of volcanism within the oceanic realm. Recently dredged continental rocks reinforce the hypothesis of a microcontinent or, at least, slivers of continental crust. However, the reserval magnetic pattern of the processed magnetic anomalies provide no evidence of aborted spreading center similar to the well-studied Jan Mayen microcontinent and the surrounding (inactive) Aegir and (active) Kolbeinsey ridges in the North Atlantic Ocean. The reversal magnetic anomalies show a series N-S trending parallel stripes roughly follow the current South American coastline and segmented by E-W oriented oceanic fracture zones (FZs). The magnetic stripes are bended eastwards at the RGR, showing a more complex magnetic pattern similar to that in the Iceland. The aborted Cruzeiro do Sul Rift (CSR) and the Jean Charcot Chain (JCC) are structures that cross the RGR and contribute to the understanding of the tectonic evolution of the South Atlantic Ocean. NW-SE oriented extensive gravity lows and bathymetric valleys, which mark the CSR, are segmented by E-W trending magnetic lineaments related to FZs. This structural configuration suggests that the extensional event, which formed the rift and the seamounts chain, was replaced by strike-slip movements along the FZs. In addition, we constructed a plate kinematic model for the evolution of the RGR based on bathymetric, free-air and Bouguer gravity and magnetic data. Our model comprises five main stages of the RGR formation and evolution between late Cretaceous and Paleocene (ca. 95 - 60 Ma), separated by published seafloor isochrones. The proposed model suggests that the RGR was built at the mid-Atlantic ridge by increased magmatism probably related to the Tristan da Cunha hotspot.  相似文献   

6.
Automatic tracing of the foot of the continental slope   总被引:1,自引:0,他引:1  
The UNCLOS III (Article 76, Section 4(b)) defines the foot of the continental slope as the point of maximum change in the gradient at its base. It is impossible to locate so defined afoot and thus to trace the foot‐line objectively by eye. In this study we show a method designed automatically to detect and trace the foot‐line of the continental slope from an irregular array of bathymetrical data. Our algorithm first transforms the bathymetric surface to a maximum curvature surface. On this new surface, the foot‐line corresponds to one of the ridges; instead of tracing the foot‐line on the bathymetric surface, we now can trace the ridges on the maximum curvature surface. The tracing of the ridges can be done automatically and objectively and the foot‐line is identified as being one of these ridges. We devote particular attention to the case when the ridge‐line is not defined, i.e., to the case when the point of maximum gradient change becomes a region of maximum gradient change.  相似文献   

7.
根据单道地震、浅地层剖面、旁扫声纳和海底取样等实测资料,分析和评价了莺歌海油气资源开发区的工程地质和灾害地质环境。研究结果表明,研究区海底地形地貌较为复杂,存在潮流沙脊、侵蚀冲沟、海底沙波、麻坑、埋藏古河道和古湖泊、浅层气、埋藏珊瑚礁和滑塌断层等潜在的灾害地质因素,对海上石油平台和输油管线等工程设施构成直接或潜在的危害。根据地形、地貌和沉积物物理力学特征,将研究区划分为内陆架堆积平原区、陆架潮流沙脊区、内陆架侵蚀平原区、外陆架平原区和大陆坡区5个工程地质区。其中研究区东部的潮流沙脊区和东南部的陆坡区,海底地形复杂,活动性的潮流沙脊和断层发育,是海底工程建设的危险区,应引起高度重视。  相似文献   

8.
The passive Eastern Continental Margin of India (ECMI) evolved during the break up of India and East Antarctica in the Early Cretaceous. The 85°E ridge is a prominent linear aseismic feature extending from the Afanasy Nikitin Seamounts northward to the Mahanadi basin along the ECMI. Earlier workers have interpreted the ridge to be a prominent hot spot trail. In the absence of conclusive data, the extension of the ridge towards its northern extremity below the thick Bengal Fan sediments was a matter of postulation. In the present study, interpretation of high resolution 2-D reflection data from the Mahanadi Offshore Basin, located in the northern part of the ridge, unequivocally indicates continuation of the ridge across the continent–ocean boundary into the slope and shelf tracts of the ECMI. Its morphology and internal architecture suggest a volcanic plume related origin that can be correlated with the activity of the Kerguelen hot spot in the nascent Indian Ocean. In the continental region, the plume related volcanic activity appears to have obliterated all seismic features typical of continental crust. The deeper oceanic crust, over which the hot spot plume erupted, shows the presence of linear NS aligned basement highs, corresponding with the ridge, underlain by a depressed Moho discontinuity. In the deep oceanic basin, the ridge influences the sediment dispersal pattern from the Early Cretaceous (?)/early part of Late Cretaceous times till the end of Oligocene, which is an important aspect for understanding the hydrocarbon potential of the basin.  相似文献   

9.
印度洋底大地构造图(1∶1 500万)基于最新地球物理数据,结合中国大洋调查航次积累的地貌、地质、地球物理和矿产资源资料编制,综合反映印度洋底及周缘地质、地貌、地球物理和资源分布等特征,将为理解和推进印度洋盆构造演化和资源分布研究提供理论支撑。本文介绍了该图编制的思路和方法、数据来源、图面内容和大地构造单元划分,认为印度洋盆具有多微陆块、多期扩张、多洋底高原、无震海岭和"入"字形洋中脊等特征。在前人研究基础上,将印度洋盆地构造演化归纳为3个阶段:(1)冈瓦纳大陆裂解与洋盆初始张开(侏罗纪-白垩纪中期);(2)洋盆持续张开与扩张中心跃迁(白垩纪中期-古近纪初期);(3)印度板块与欧亚板块俯冲碰撞及非洲板块裂解(新生代)。在扩张中心跃迁式的发育形式下,现今印度洋盆多微陆块、多期扩张中心和"入"字形的洋中脊基本构造格局在古近纪早期便已形成。  相似文献   

10.
On the basis of bathymetric data and other geological and geophysical data obtained during the first survey conducted by Chinese Mainland in the area off eastern Taiwan Island from May to June in 2000, the morphological features of the region, the tectonic control to the seafloor topography and their tectonic implication are studied and discussed. The results have revealed that both the slope zone of the Ryukyu arc and the Ryukyu Trench present a typical morphotectonic characteristics controlled by the trench-arc system in the West Pacific Ocean. At the slope of eastern Taiwan Island the isobathic lines parallel to the coastline and distribute densely in nearly N-S direction and the slope gradient of topography is large. Such a unique feature is attributed to the collision of the Luzon arc and Eurasia continent. In the Huatung Basin, turbidity fans and submarine canyons are well developed, the formations of which are mainly related to the steep topography of the slope of the Luzon arc and the abundant s  相似文献   

11.
白垩纪以来太平洋上地幔组成和温度变化   总被引:1,自引:0,他引:1  
The geological evolution of the Earth during the mid-Cretaceous were shown to be anomalous, e.g., the pause of the geomagnetic field, the global sea level rise, and increased intra-plate volcanic activities, which could be attributed to deep mantle processes. As the anomalous volcanic activities occurred mainly in the Cretaceous Pacific, here we use basalt chemical compositions from the oceanic drilling(DSDP/ODP/IODP) sites to investigate their mantle sources and melting conditions. Based on locations relative to the Pacific plateaus, we classified these sites as oceanic plateau basalts, normal mid-ocean ridge basalts, and near-plateau seafloor basalts. This study shows that those normal mid-ocean ridge basalts formed during mid-Cretaceous are broadly similar in average Na8, La/Sm and Sm/Yb ratios and Sr-Nd isotopic compositions to modern Pacific spreading ridge(the East Pacific Rise). The Ontong Java plateau(125–90 Ma) basalts have distinctly lower Na8 and143Nd/144 Nd, and higher La/Sm and 87Sr/86 Sr than normal seafloor basalts, whereas those for the near-plateau seafloor basalts are similar to the plateau basalts, indicating influences from the Ontong Java mantle source. The super mantle plume activity that might have formed the Ontong Java plateau influenced the mantle source of the simultaneously formed large areas of seafloor basalts. Based on the chemical data from normal seafloor basalts, I propose that the mantle compositions and melting conditions of the normal mid-ocean ridges during the Cretaceous are similar to the fast spreading East Pacific Rise. Slight variations of mid-Cretaceous normal seafloor basalts in melting conditions could be related to the local mantle source and spreading rate.  相似文献   

12.
Recently acquired (2005) multi-beam bathymetric and high-resolution seismic reflection data from the E–W-oriented Gulf of Gökova off SW Anatolia were evaluated in order to assess the uneven seafloor morphology and its evolution in terms of present-day active regional tectonics. Stratigraphically, the three identified seismic units, i.e., the basement, deltaic sediments deposited during Quaternary glacial periods, and modern gulf deposits, are consistent with those observed in previous studies. Structurally, the folds and faults with strike-slip and reverse components have been regionally mapped for the first time. Of these, NE–SW-oriented left-lateral strike-slip faults with compressional components forming the so-called Gökova Fault Zone intersect and displace two WNW–ESE-oriented submarine ridges and deep submarine plains. Thus, strike-slip faults are the youngest major structures in the gulf, and control present-day active tectonism. E–W-oriented folds on the inner and outer shelf, which are generally accompanied by reverse faults, delimit the margins of these submarine ridges, and deform the young basin deposits. These features also reveal the concomitant existence of a compressional tectonic regime. The compressional structures probably represent pressure ridges along left-lateral strike-slip fault segments. However, some E–W-oriented normal faults occur on the northwestern and partly also southern shelf, and along the borders of the adjacent deep submarine plains. They are intersected and displaced by the strike-slip faults. The lower seismicity along the normal faults relative to the NE–SW-oriented strike-slip faults suggests that the former are at present inactive or at least less active.  相似文献   

13.
The combination of multi-beam echo-sounder swath bathymetry and high-resolution deep-towed sidescan sonar provides a powerful database from which to examine mid-ocean ridge processes. We have used such a database, gathered from the Mid-Atlantic Ridge north of the Kane Fracture Zone (the MARNOK area), to examine the relationship between tectonic, volcanic, and bathymetric segmentation. We have identified structural domains, with different fault distributions, and neovolcanic segments that are distinct from the 2nd or 3rd order bathymetric segmentation.From their mutual relationships, a model is proposed for the magmatic accretion of oceanic crust at slow spreading ridges that relates the local melt supply to the tectonic style. We suggest that these are mutually interactive, and determine whether volcanic extrusion along the ridge is continuous and slow, or episodic and rapid.  相似文献   

14.
西地中海加的斯湾、埃布罗湾、巴塞罗那岸外和利翁湾等外陆架和陆坡上部分布大片的砂质水下沙丘、沙带、沙脊以及沙席等砂质底形。沙丘长为150~760m,最长为3km;高一般为0.1~5.0m,最高为20m。背流坡指向SW,丘长与丘高相关斜率为H=0.934L0.006 3,低于1978年世界标准的F氏斜率线;沙脊长为4~24km,宽为1~2.3km,高出海底10~30m。砂层厚约12~30m,其成因与冰消期古岸线相关。以水深350m的直布罗陀海峡为中心,大西洋低盐水团和地中海高盐水团相交换而形成的地中海环流是导致海底砂质底形发育的主要动力,陆架外侧普遍分布的垂岸沟谷及顺谷流也起一定作用。据14C年代测定,大型沙丘沙脊形成于距今13~11ka的冰消期,当时海面波动式趋稳。现代洋流只能在暴风浪期间、底流速较大时才能带动泥沙运动且进行局部修饰、破坏和蚀低原砂质底形。  相似文献   

15.
大陆坡脚是大陆边缘的一个重要地形特征,是沿海国扩展其大陆架权利和划定其200海里以外大陆架外部界限的基础,也是大陆架界限委员会审议沿海国划界案时特别关注的重要技术参数。《联合国海洋法公约》第76条大陆架制度的制定源于典型的被动大陆边缘。但由于全球大陆边缘的多样性和复杂性,特别是后期构造活动、沉积作用对大陆边缘的改造与影响,海底地形地貌异常复杂多变,导致大陆坡脚的识别非常困难。加上各沿海国为获得最大范围的外大陆架,对大陆坡脚的相关规定进行有利于自己的解释,使得大陆坡脚的确定成了外大陆架划界中一个颇具争议的热点问题。本文基于对《联合国海洋法公约》和《大陆架界限委员会科学和技术准则》对大陆坡脚的规定,结合不同类型大陆边缘的地质特征和各沿海国划界实践,对陆坡基部区的确定、坡度变化最大之点的选取以及相反证明规则的适用性等问题进行了探讨。  相似文献   

16.
The innermost shelf off Sarasota, Florida was mapped using sidescan-sonar imagery, seismic-reflection profiles, surface sediment samples, and short cores to define the transition between an onshore siliciclastic sand province and an offshore carbonate province and to identify the processes controlling the distribution of these distinctive facies. The transition between these facies is abrupt and closely tied to the morphology of the inner shelf. A series of low-relief nearly shore-normal ridges characterize the inner shelf. Stratigraphically, the ridges are separated from the underlying Pleistocene and Tertiary carbonate strata by the Holocene ravinement surface. While surficial sediment is fine to very-fine siliciclastic sand on the southeastern sides of the ridges and shell hash covers their northwestern sides, the cores of these Holocene deposits are a mixture of both of these facies. Along the southeastern edges of the ridges the facies boundary coincides with the discontinuity that separates the ridge deposits from the underlying strata. The transition from siliciclastic to carbonate sediment on the northwestern sides of the ridges is equally abrupt, but it falls along the crests of the ridges rather than at their edges. Here the facies transition lies within the Holocene deposit, and appears to be the result of sediment reworking by modern processes. This facies distribution primarily appears to result from south-flowing currents generated during winter storms that winnow the fine siliciclastic sediment from the troughs and steeper northwestern sides of the ridges. A coarse shell lag is left armoring the steeper northwestern sides of the ridges, and the fine sediment is deposited on the gentler southeastern sides of the ridges. This pronounced partitioning of the surficial sediment appears to be the result of the siliciclastic sand being winnowed and transported by these currents while the carbonate shell hash falls below the threshold of sediment movement and is left as a lag. The resulting facies boundaries on this low-energy, sediment-starved inner continental shelf are of two origins which both are tied to the remarkably subtle ridge morphology. Along the southeastern sides of the ridges the facies boundary coincides with a stratigraphic discontinuity that separates Holocene from the older deposits while the transition along the northwestern sides of the ridges is within the Holocene deposit and is the result of sediment redistribution by modern processes.  相似文献   

17.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

18.
Transverse ridges are elongate reliefs running parallel and adjacent to transform/fracture zones offsetting mid-ocean ridges. A major transverse ridge runs adjacent to the Vema transform (Central Atlantic), that offsets the Mid-Atlantic Ridge by 320 km. Multibeam morphobathymetric coverage of the entire Vema Transverse ridge shows it is an elongated (300 km), narrow (<30 km at the base) relief that constitutes a topographic anomaly rising up to 4 km above the predicted thermal contraction level. Morphology and lithology suggest that the Vema Transverse ridge is an uplifted sliver of oceanic lithosphere. Topographic and lithological asymmetry indicate that the transverse ridge was formed by flexure of a lithospheric sliver, uncoupled on its northern side by the transform fault. The transverse ridge can be subdivided in segments bound by topographic discontinuities that are probably fault-controlled, suggesting some differential uplift and/or tilting of the different segments. Two of the segments are capped by shallow water carbonate platforms, that formed about 3–4 m.y. ago, at which time the crust of the transverse ridge was close to sea level. Sampling by submersible and dredging indicates that a relatively undisturbed section of oceanic lithosphere is exposed on the northern slope of the transverse ridge. Preliminary studies of mantle-derived ultramafic rocks from this section suggest temporal variations in mantle composition. An inactive fracture zone scarp (Lema fracture zone) was mapped south of the Vema Transverse ridge. Based on morphology, a fossil RTI was identified about 80 km west of the presently active RTI, suggesting that a ridge jump might have occurred about 2.2 m.a. Most probable causes for the formation of the Vema Transverse ridge are vertical motions of lithospheric slivers due to small changes in the direction of spreading of the plates bordering the Vema Fracture Zone.  相似文献   

19.
The location of the India-Arabia plate boundary prior to the formation of the Sheba ridge in the Gulf of Aden is a matter of debate. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental and oceanic crust overlaid by ophiolites emplaced in Early Paleocene on its western side. A major fossil transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ∼40 Myrs ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere formed at the Carlsberg Ridge to Arabia. This Late Eocene-Oligocene tectonic episode at the India-Arabia plate boundary is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and Himalaya belts. The Owen Ridge uplifted later, in Late Miocene times, and is unrelated to any major migration of the India-Arabia boundary.  相似文献   

20.
Chen-Yuan Chen   《Ocean Engineering》2007,34(14-15):1995-2008
Stratified mixing is observed in a wave flume on an internal solitary wave (ISW) of depression or elevation type propagating over a submarine ridge. The submarine ridges, which comprise the seabed topography, are either semicircular or triangular. Tests are performed in a series of combinations of submarine ridges with different heights and ISW in different amplitudes within a two-layer fluid system. When the thickness of the top layer is less than that of the lower layer (i.e., H1<H2), a depression-type ISW may produce a strong hydraulic jump with downwards motion and continuous eddy diffusion. During diffusion, the leading profile of the ISW transforms a wrapped vortex on the front face of the ridge, and a vortex separation at the apex of the ridge. Meanwhile, an elevation-type ISW causes a vortex in the lee of a submarine ridge, which resembles a surface solitary wave in terms of wave transmission process. The degree of wave-obstacle interaction is determined by energy loss, which is induced by submarine ridge blockage. The experiment results suggest that degree of blocking can be applied to classify various degrees of ISW-obstacle encounter in the stratified two-layer fluid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号