首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
桥梁抗震防灾研究也可以说是桥梁易损性分析问题,Pushover分析方法具有表达非线性静力分析的特性,而在桥梁抗震分析和计算方面也表现出较好的适应能力,阐述该方法的基本原理,并用桥梁实际震害样本与Pushover分析方法计算结果进行对比,其对比结果表明,用Pushover分析方法计算出的结果比较符合实际震害情况,显然该法对处理一般性桥梁问题是可行和有效的。  相似文献   

2.
高层建筑结构静力弹塑性分析的Pushover-QR法   总被引:4,自引:0,他引:4  
将QR法与Pushovcer分忻方法相结合,提出了高层建筑结构静力弹塑性分析的Pushover-QR(PO-QR)法。该方法沿用了常规Pushover方法进行抗震结构静力弹塑性分析的实施思路,用QR法代替Pushover分析方法中的有限元部分,充分利用这两种方法的优点,使得抗震结构静力弹塑性分析的计算得到较大的简化。PO-QR法程序的工程算例表明,该法是一种经济、有效、可行的分析方法。  相似文献   

3.
基于IDA法与Pushover法的混凝土核心筒抗震性能对比分析   总被引:1,自引:0,他引:1  
侯炜 《地震学刊》2014,(2):242-247
足够数量地震输入的增量动力分析方法(IDA方法)是目前最为真实和先进的模拟结构抗震性能手段,而静力推覆分析方法(Pushover Analysis方法)操作简单,更为实用,可以较好揭示结构从弹性到屈服直至倒塌过程中构件的工作状态。采用2种方法对钢筋混凝土核心筒算例进行评估,并作对比分析。结果表明,采用IDA方法得到的4个性能水平与Pushover方法得到的指标限值有一定误差,但均在一定范围之内,采用IDA方法得到顶点位移角限值偏大;采用单一侧力模式的Pushover方法无法完全体现高阶振型及地震动等因素的影响,造成Pushover方法分析结果与结构实际弹塑性地震响应有一定差异。  相似文献   

4.
静力Pushover分析方法是研究结构在地震作用下力学性能的非线性分析方法,目前已经得到了广泛的运用.本文主要讨论了对于简支梁桥的简化Pushover分析方法.对于非高墩的规则桥梁,结构的重量主要来自于上部结构,因而可以把分析模型简化为单自由度体系.当给定了墩柱潜在塑性铰区的弯矩-曲率关系曲线后,可以通过简单的运算得到其Pushover曲线,从而避免了有限元建模的麻烦.该方法对于工程运用有着一定的参考价值.最后,结合算例表明了该简化方法的有效性.  相似文献   

5.
基于性能的框架结构抗震安全评估方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
阐述了基于性能的地震反应静力非线性分析方法(Pushover法)的原理及实施步骤;利用结构有限元分析软件ETABS分别采用地震反应谱法、底部剪力法、Pushover法和动力时程分析法对一10层钢筋砼框架结构进行了抗震评估分析。结果表明Pushover法在整体层面和构件层面都能对结构的抗震性能做出很好的评估,对与算例类似的中底层结构是一种可靠实用的建筑结构抗震安全评估方法。  相似文献   

6.
简要介绍了静力弹塑性分析方法(Pushover法)的原理、计算步骤和影响分析结果的主要因素.并通过实例比较了pushover分析结果与非线性动力分析结果,分析了高度、荷载分布模式因素对分析结果的影响。  相似文献   

7.
为研究地下结构Pushover分析方法在不同条件下的适用性,基于有限元软件平台,建立长江漫滩区地铁车站土-结构二维有限元分析模型,分别采用非线性动力时程分析方法与地下结构Pushover分析方法对5种不同土体刚度模型进行抗震分析。峰值层间位移角与峰值内力的分析结果表明,当土体刚度与结构刚度一致时,地下结构Pushover分析方法计算结果与非线性动力时程分析方法计算结果相近,而当土体刚度小于结构刚度或土体刚度大于结构刚度时,Pushover分析方法计算精度下降。  相似文献   

8.
提供两个高效而实用的FORTRAN程序(例行子程序形式),用于对称三对角矩阵的两个计算问题(其一是线性代数方程组的求解,其二是广义特征值问题的计算)。在工程应用中,它们可用于多层建筑的振动特性分析、反应谱法地震变形计算、Pushover静力推覆分析和时程法地震反应分析等问题中。  相似文献   

9.
框架剪力墙结构模态静力非线性抗震分析方法研究   总被引:5,自引:2,他引:3  
本文在模态pushover分析方法基础上推导建立了模态静力非线性分析方法,对一栋10层框架剪力墙结构进行了静力非线性分析,提出了目标位移求解的等效单自由度体系弹塑性时程分析迭代法,计算结果与相应时程分析结果进行了比较,表明两者吻合较好,验证了本文计算方法的有效性。另外,对同一结构,计算分析了在不同水平荷载模式下的静力非线性分析结果,比较不同荷载模式对计算结果的影响,为静力非线性分析方法的推广使用提供参考。  相似文献   

10.
地下结构抗震是当今地震工程领域重要的研究方向之一。迄今,国内外学者在地下结构抗震分析中提出了解析方法、数值分析方法和简化分析方法等多种理论。本文系统介绍了目前国内外常见的地下结构抗震简化分析方法,包括地震系数法、自由场变形法、柔度系数法、反应位移法、反应加速度法和地下结构Pushover分析方法。针对各分析方法的计算模型、关键参数、优缺点以及存在的问题进行了较为系统的评述,采用这些方法计算了日本阪神地震中损毁的大开地铁车站地震反应,并与严格的动力时程分析方法结果进行了比较,分析了各种方法的计算精度,可为进一步发展和完善现有的地下结构抗震简化分析方法提供参考。  相似文献   

11.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Nonlinear static (pushover) analysis has become a popular tool during the last decade for the seismic assessment of buildings. Nevertheless, its main advantage of lower computational cost compared to nonlinear dynamic time‐history analysis (THA) is counter‐balanced by its inherent restriction to structures wherein the fundamental mode dominates the response. Extension of the pushover approach to consider higher modes effects has attracted attention, but such work has hitherto focused mainly on buildings, while corresponding work on bridges has been very limited. Hence, the aim of this study is to adapt the modal pushover analysis procedure for the assessment of bridges, and investigate its applicability in the case of an existing, long and curved, bridge, designed according to current seismic codes; this bridge is assessed using three nonlinear static analysis methods, as well as THA. Comparative evaluation of the calculated response of the bridge illustrates the applicability and potential of the modal pushover method for bridges, and quantifies its relative accuracy compared to that obtained through other inelastic methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
An overview of the applicability of a typical single‐mode pushover method (the N2 method) and two typical multi‐mode pushover methods (the modal pushover analysis (MPA) and incremental response spectrum analysis (IRSA) methods) for the analysis of single column bent viaducts in the transverse direction is presented. Previous research, which was limited to relatively short viaducts supported by few columns, has been extended to longer viaducts with more bents. The single‐mode N2 method is accurate enough for bridges where the effective modal mass of the fundamental mode is at least 80% of the total mass. The applicability of this method depends on (a) the ratio of the stiffness of the superstructure to that of the bents and (b) the strength of the bents. In short bridges with few columns, the accuracy of the N2 method increases as the seismic intensity increases, whereas in long viaducts (e.g. viaducts with lengths greater than 500 m) the method is in general less effective. In the case of the analyzed moderately irregular long viaducts, which are common in construction design practice, the MPA method performed well. For the analysis of bridges where the modes change significantly, depending on the seismic intensity, the IRSA method is in principle more appropriate, unless a viaduct is torsionally sensitive. In such cases, all simplified methods should be used with care. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
It is critical to ensure the functionality of highway bridges after earthquakes to provide access to important facilities. Since the 1971 San Fernando earthquake, there has been a better understanding of the seismic performance of bridges. Nonetheless, there are no detailed guidelines addressing the performance of skewed highway bridges. Several parameters affect the response of skewed highway bridges under both service and seismic loads which makes their behavior complex. Therefore, there is a need for more research to study the effect of skew angle and other related factors on the performance of highway bridges. This paper examines the seismic performance of a three-span continuous concrete box girder bridge with skew angles from 0 to 60 degrees, analytically. Finite element (FE) and simplified beam-stick (BS) models of the bridge were developed using SAP2000. Different types of analysis were considered on both models such as: nonlinear static pushover, and linear and nonlinear time history analyses. A comparison was conducted between FE and BS, different skew angles, abutment support conditions, and time history and pushover analysis. It is shown that the BS model has the capability to capture the coupling due to skew and the significant modes for moderate skew angles. Boundary conditions and pushover load profile are determined to have a major effect on pushover analysis. Pushover analysis may be used to predict the maximum deformation and hinge formation adequately.  相似文献   

15.
Traditional pushover analysis is performed subjecting the structure to monotonically increasing lateral forces with invariant distribution until a target displacement is reached; both the force distribution and target displacement are hence based on the assumption that the response is controlled by a fundamental mode, that remains unchanged throughout. However, such invariant force distributions cannot account for the redistribution of inertia forces caused by structural yielding and the associated changes in the vibration properties, including the increase of higher‐mode participation. In order to overcome such drawbacks, but still keep the simplicity of using single‐run pushover analysis, as opposed to multiple‐analyses schemes, adaptive pushover techniques have recently been proposed. In order to investigate the effectiveness of such new pushover schemes in assessing bridges subjected to seismic action, so far object of only limited scrutiny, an analytical parametric study, conducted on a suite of continuous multi‐span bridges, is carried out. The study seems to show that, with respect to conventional pushover methods, these novel single‐run approaches can lead to the attainment of improved predictions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The influence of the higher modes and their consideration in the pushover analysis of reinforced concrete single column bent viaducts with different degree of irregularity is discussed. Typical multimode pushover‐based methods (modal pushover analysis, modal adaptive non‐linear static procedure and incremental response spectrum analysis) are addressed and compared with a single mode procedure (N2) and inelastic time history analysis. If in the transverse direction the substructure of the viaduct is flexible in comparison with the superstructure, the influence of higher modes is small (the structure is regular) and single mode procedure works well. This typically occurs when the columns are high or considerably damaged. Conversely, for the analysis of irregular structures having short and slightly damaged columns, the multimode methods are needed. In most cases, all the analysed multimode pushover‐based methods have given the results comparable with time history analysis, with the exception of cases where torsional sensitivity is varying during the response. All the methods have limitations (discussed in detail in the paper), which should be fully recognized by the user. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a comprehensive comparison of different dynamic and static approaches for assessing building performance under sequential earthquakes and tsunami. A 10-storey reinforced concrete seismically designed Japanese vertical evacuation structure is adopted as a case study for the investigation. The case study building is first assessed under sequential earthquake and tsunami nonlinear response history analyses: the first time this is done in the literature. The resulting engineering demand parameters are then compared with those obtained when the analysis procedure is systematically simplified by substituting different static approaches for the nonlinear response history analyses in both the earthquake and tsunami loading phases. Different unloading approaches are also tested for the cases when an earthquake pushover is adopted. The results show that an earthquake nonlinear response history analysis, followed by a transient free vibration and a tsunami variable depth pushover, provides the best alternative to full dynamic analyses in terms of accuracy and computational efficiency. This structural analysis combination is recommended and has the advantage that it does not require the tsunami inundation time history to be known in advance. The proposed double pushover approach is instead deemed only suitable for the collapse assessment of regular low to mid-rise buildings and for the development of collapse fragility functions. An important observation made is that sustained earthquake damage seems not to affect the tsunami resistance of the case study building when the fully dynamic analysis is carried out for the sequential loading. This observation will be the subject of future work.  相似文献   

18.
Alternative static pushover methods for the seismic design of new structures are assessed with the aid of advanced computational tools. The current state-of-practice static pushover methods as suggested in the provisions of European and American regulations are implemented in this comparative study. In particular the static pushover methods are: the displacement coefficient method of ASCE-41, the ATC-40 capacity spectrum method and the N2 method of Eurocode 8. Such analysis methods are typically recommended for the performance assessment of existing structures, and therefore most of the existing comparative studies are focused on the performance of one or more structures. Therefore, contrary to previous research studies, we use static pushover methods to perform design and we then compare the capacity of the outcome designs with reference to the results of nonlinear response history analysis. This alternative approach pinpoints the pros and cons of each method since the discrepancies between static and dynamic analysis are propagated to the properties of the final structure. All methods are implemented in an optimum performance-based design framework to obtain the lower-bound designs for two regular and two irregular reinforced concrete building configurations. The outcome designs are compared with respect to the maximum interstorey drift and maximum roof drift demand obtained with the Incremental Dynamic Analysis method. To allow the comparison, also the life-cycle cost of each design is calculated; i.e. a parameter that is used to measure the damage cost due to future earthquakes that will occur during the design life of the structure. The problem of finding the lower bound designs is handled with an Evolutionary type optimization algorithm.  相似文献   

19.
The structure's ability to survive an earthquake may be measured in terms of the expected state of damage of the structure after the earthquake. Damage may be quantified by using any of several damage indices defined as functions whose values can be related to particular structural damage states. A number of available response-based damage indices are discussed and critically evaluated for their applicability in seismic damage evaluation. A new rational approach for damage assessment is presented which provides a measure of the physical response characteristics of the structure and is better suited for non-linear structural analysis. A practical method based on the static pushover analysis is proposed to estimate the expected damage to structures when subjected to earthquakes of different intensities. Results of the analysis of ductile and non-ductile reinforced concrete buildings show that the proposed procedure for damage assessment gives a simple, consistent and rational damage indicator for structures. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
静力弹塑性分析(Pushover Analysis)的基本原理和计算实例   总被引:86,自引:3,他引:86  
阐述了美国两本手册FEMA273/274和ATC-40中关于静力弹塑性分析的基本原理和方法,给出了利用ETABS程序进行适合我国地震烈度分析的计算步骤,并用一框剪结构示例予以说明,表明Pushover方法是目前对结构进行在罕遇地震作用下弹塑性分析的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号