首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Results of the chemical and isotopic analysis of the water and gases discharged from volcanic crater lakes and soda springs located along the Cameroon Volcanic Line were used to characterize and infer their genetic relationships. Variations in the solute compositions of the waters indicate the dominant influence of silicate hydrolysis. Na+ (40–95%) constitutes the major cation in the springs while Fe2+ + Mg2+ (70%) dominate in the CO2-rich lakes. The principal anion is HCO3 (>90%), except in the coastal springs where Cl-predominates. Lakes Nyos and Monoun have FeMgCaHCO3 type signatures; the soda springs are essentially NaHCO3 type, while all other lakes show similar ionic compositions to dilute surface waters. Dissolved gases show essentially CO2 (>90%), with small amounts of Ar and N2, while CH4 constitutes the principal component in the non-gassy lakes. Active volcanic gases are generally absent, except in the Lobe spring with detectable H2S. Stable isotope ratio evidence indicates that the bicarbonate waters are essentially of meteoric origin. CO2 (δ13C = −2 to −8%0 and He (3He/4He = 1 to 5.6Ra) infer a mantle contribution to the total CO2. CH4 has a biogenic source, while Ar and N2 are essentially atmospheric in origin, but mixing is quite common.  相似文献   

2.
腾冲新生代火山区温泉CO2气体排放通量研究   总被引:6,自引:6,他引:0  
近期研究表明,不仅火山喷发期会向当时的大气圈输送大量的温室气体,火山间歇期同样会释放大量的温室气体。在火山活动间歇期,火山区主要以喷气孔、温(热)泉以及土壤微渗漏等形式向大气圈释放温室气体。腾冲是我国重要的新生代火山区,同时也是重要的水热活动区,那里出露大量的温泉,然而目前未见腾冲火山区温泉气体排放通量的研究报道。本文利用数字皂膜通量仪测量了腾冲新生代火山区温泉中CO2的排放通量。研究结果表明,腾冲新生代火山区温泉向当今大气圈输送的CO2通量达3.58×103 t·a-1,相当于意大利锡耶纳Bassoleto地热区温泉中CO2的排放规模。腾冲火山区温泉的CO2释放通量主要受深部岩浆囊、断裂分布、地下水循环、围岩成分等多方面因素的影响。本文根据温泉中CO2的排放特征,将腾冲温泉分为南北两区,南区温泉CO2通量远高于北区的温泉,热海地热区的通量为腾冲CO2通量的最大值。在北温泉区,CO2通量主要受控于断裂的分布;而在南温泉区,除受到断裂控制外,热海地热区底部的岩浆囊及其与围岩的相互作用成为CO2气体的重要物质来源,同时高温的岩浆囊为温泉及CO2的形成提供了重要热源。  相似文献   

3.
《Applied Geochemistry》1997,12(4):411-427
Chemical and isotope compositions of fluid samples, collected between 1974 and 1986 from 52 springs or shallow boreholes located in the Mont-Dore region (Massif Central, France), were examined. Some springs and wells were sampled several times during this period. The fluids emerge from Quaternary volcanic rocks or Paleozoic granite at temperatures between 4 and 62°C, and the origin of the H2O is meteoric. The waters can be classified into three groups: bicarbonate fluids, mixed bicarbonate-chloride fluids (with a mineralization up to 8 g/l), and acid-sulfate fluids. Only two fluids contain sufficient Cl to be considered as ‘mature’ waters. Previous work has demonstrated that they all contain partly mantle-derived CO2 gas, and that the CO2-rich gas phase and bicarbonate-chloride waters are separated at substantial depth.Mineralized fluids circulate at depth and undergo several processes, such as cooling or dilution with recent freshwater, during their ascent to the surface. Therefore, the CO2-rich gas phase can be partly dissolved in the freshwater, or in deep fluids after their dilution. This process leads to the dissolution of surrounding rocks; such dissolution is discussed on the basis of major-element concentrations (Na, K, Ca, Mg), as well as the Sr 87/86 isotope ratio. Dissolution of S-bearing minerals has also been demonstrated. The presence of the CO2-rich gas phase also leads to isotope exchange between CO2 and H2O. Some mineralized fluids are less affected by these processes than others, in which case they display the chemical and isotopic characteristics of the original deep fluids.It was shown that the applicability of geothermometer calculations for these waters is hampered by several processes that modify the chemical composition. However, some geothermometers can be used for estimating the temperature of the deep fluids using the chemical composition of the less modified fluids. They indicate that fluids emerging from volcanic rocks in the Dordogne valley reach temperatures of around 100–130°C at depth, while the temperature of the fluid that issues from the granite at Saint-Nectaire is 160–175°C at depth.  相似文献   

4.
《Applied Geochemistry》2000,15(9):1345-1367
Rare Earth Elements (REEs), and Sr and Nd isotope distributions, have been studied in mineralized waters from the Massif Central (France). The CO2-rich springs are characterized by a neutral pH (6–7) associated with total dissolved solids (TDS) from 1 to 7 g l−1. The waters result from the mixing of very mineralized water pools, thought to have equilibrated at a temperature of around 200°C with superficial waters. These two mineral water pools evidenced by Sr isotopes and dissolved REEs could reflect 2 different stages of water–rock interaction and an equilibrium with different mineral assemblages.The concentrations of individual dissolved REEs and total dissolved REEs (ΣREE), in the mineral waters examined, vary over several orders of magnitude but are not dependent on the main parameters of the waters (TDS, T°C, pH, Total Organic C). The dissolved REE concentrations presented as upper continental crust normalized patterns show HREE enrichment in most of the samples. The time evolution of REE patterns does not show significant fluctuations except in 1 borehole, located in the Limagne d’Allier area, which was sampled on 16 occasions over an 18 month period. Ten samples are HREE-enriched, whereas 6 samples show flat patterns.The aqueous speciation of REEs shows that CO2−3 complexes dominate (>80%) over the free metal, F, SO2−4 and HCO3 complexes. The detailed speciation demonstrates that the fractionation of REEs (i.e. the HREE enrichment) in CO2-rich and pH neutral fluids is due essentially to the predominance of the CO2−3 complexes.The Sr isotopic composition of the mineral waters in the Massif Central shows different mixing processes; in the Cézallier area at least 3 end-member water types exist. The most dilute end-member is likely to originate as poorly mineralized waters with minimal groundwater circulation. Two other mineralized end-members are identified, although the link between the geographical location of spring outflow and the mixing proportion between the 2 end-members is not systematic. The range in ϵNd(0) for mineralized waters in the Massif Central correlates well with that of the known parent rocks except for 4 springs. One way to explain the ϵNd(0) in these instances is a contribution from drainage of volcanic rocks. The isotopic systematics help to constrain the hydrogeological models for this area.  相似文献   

5.
《Applied Geochemistry》2000,15(4):455-474
Between 1987 and 1995 more than 100 chemical and isotopic analyses were carried out on the thermal fluids discharged at surface from wells and springs of the Euganean and Berician thermal district. Results for δD and δ18O in waters, δ13C in CO2 and in C1–C4 n-alkanes, δD in CH4, 3He/4He and 40Ar/36Ar ratios in natural gases were coupled with chemical analyses in an attempt to determine the main characteristics and evolutionary trends of thermal fluids emerging in the region. The isotopic and chemical composition of thermal waters has led to the postulation of a meteoric origin of discharged thermal fluids and of a “maturation” trend as water moves from the peripheral manifestations of the Berici Hills towards those of the Battaglia, Montegrotto and Abano springs in the inner part of the geothermal field. Numerical simulation suggested that the observed evolutionary path is consistent with differentiation due to processes of water–rock interaction.The results of bulk analyses have shown that the gases are made up mainly of N2 (65–95 vol%), CO2 (0.5–20.5 vol%) and CH4 (up to 10 vol%), with relatively high Ar and He contents (up to 1.5 vol% and 0.16 vol%, respectively) and detectable amounts of C2–C6 saturated hydrocarbons. The chemical and isotopic composition of the gases suggests that both the meteoric and crustal contributions to the natural discharges are significant, while any significant magmatic contribution, possibly related to vestiges of the volcanic activity that occurred in the Abano area during the Tertiary age, can be ruled out.  相似文献   

6.
7.
Isotopic and chemical composition of groundwater from wells and springs, and surface water from the basalt-dominated Axum area (northern Ethiopia) provides evidence for the origin of water and dissolved species. Shallow (depth < 40 m) and deep groundwater are distinguished by both chemical and isotopic composition. Deep groundwater is significantly enriched in dissolved inorganic carbon up to 40 mmol l−1 and in concentrations of Ca2+, Mg2+, Na+ and Si(OH)4 compared to the shallow type.The δ2H and δ18O values of all solutions clearly indicate meteoric origin. Shifts from the local meteoric water line are attributed to evaporation of surface and spring water, and to strong water–rock interaction. The δ13CDIC values of shallow groundwater between −12 and −7‰ (VPDB) display the uptake of CO2 from local soil horizons, whereas δ13CDIC of deep groundwater ranges from −5 to +1‰. Considering open system conditions with respect to gaseous CO2, δ13CDIC = +1‰ of the deep groundwater with highest PCO2 = 10−0.9 atm yields δ13CCO2(gas) ≈ −5‰, which is close to the stable carbon isotopic composition of magmatic CO2. Accordingly, stable carbon isotope ratios within the above range are referred to individual proportions of CO2 from soil and magmatic origin. The uptake of magmatic CO2 results in elevated cations and Si(OH)4 concentrations. Weathering of local basalts is documented by 87Sr/86Sr ratios of the groundwater from 0.7038 to 0.7059. Highest values indicate Sr release from the basement rocks. Besides weathering of silicates, neoformation of solids has to be considered, which results in the formation of, e.g., kaolinite and montmorillonite. In several solutions supersaturation with respect to calcite is reached by outgassing of CO2 from the solution leading to secondary calcite formation.  相似文献   

8.
《Applied Geochemistry》2005,20(6):1060-1076
A geochemical model is proposed for water evolution at Somma–Vesuvio, based on the chemical and isotopic composition of groundwaters, submarine gas emission and chemical composition of the dissolved gases. The active degassing processes, present in the highest part of the volcano edifice, strongly influence the groundwater evolution. The geological–volcanological setting of the volcano forces the waters infiltrating at Somma–Vesuvio caldera, enriched in volcanic gases, to flow towards the southern sector to an area of high pCO2 groundwaters. Reaction path modelling applied to this conceptual model, involving gas–water–rock interaction, highlights an intense degassing process in the aquifer controlling the chemical and isotopic composition of dissolved gases, total dissolved inorganic C (TDIC) and submarine gas emission. Mapping of TDIC shows a unique area of high values situated SSE of Vesuvio volcano with an average TDIC value of 0.039 mol/L, i.e., one order of magnitude higher than groundwaters from other sectors of the volcano. On the basis of TDIC values, the amount of CO2 transported by Vesuvio groundwaters was estimated at about 150 t/d. This estimate does not take into account the fraction of gas loss by degassing, however, it represents a relevant part of the CO2 emitted in this quiescent period by the Vesuvio volcanic system, being of the same order of magnitude as the CO2 diffusely degassed from the crater area.  相似文献   

9.
Acid sulfate-chloride thermal water samples collected together with fumarolic gases from various volcanic areas in northeastern Japan were studied chemically and isotogdically. δ34S (COT) values of sulfate and hydrogen sulfide from these volcanic hot springs range from +4.0 to +31 and from ?15.0 to ?2.0% respectively, with δ34Sys value of +2.5 to +31. The δ34S of the sulfate in the more saline waters tends to become smaller with increasing ratio of SO4 to Cl, although the chemical and isotopic composition of acid thermal water within some areas may be altered by secondary processes during the discharge of the thermal waters. This trend can be explained by the reaction of the volcanic gases, having S/Cl of 4 ~ 7 and total sulfur of ~0% in δ34S, with ground water at 200°C, and/or the removal of sulfide phase depleted in 34S from the acid thermal water formed by the disproportionation of volcanic sulfur. The sulfur species in acid sulfate-chloride thermal water are shown to be volcanic exhalations.  相似文献   

10.
《Applied Geochemistry》2006,21(2):289-304
Mineral springs from Daylesford, Australia discharge at ambient temperatures, have high CO2 contents, and effervesce naturally. Mineral waters have high HCO3 and Na concentrations (up to 4110 and 750 mg/L, respectively) and CO2 concentrations of 620–2520 mg/L. Calcium and Mg concentrations are 61–250 and 44–215 mg/L, respectively, and Si, Sr, Ba, and Li are the most abundant minor and trace elements. The high PCO2 of these waters promotes mineral dissolution, while maintaining low pH values, and geochemical modelling indicates that the CO2-rich mineral water must have interacted with both sediments and basalts. Amorphous silica concentrations and silica geothermometry indicate that these waters are unlikely to have been heated above ambient temperatures and therefore reflect shallow circulation on the order of several hundreds of metres. Variations in minor and trace element composition from closely adjacent spring discharges indicate that groundwater flows within relatively isolated fracture networks. The chemical consistency of individual spring discharges over at least 20 a indicates that flow within these fracture networks has remained isolated over long periods. The mineral water resource is at risk from mixing with potentially contaminated surface water and shallow groundwater in the discharge areas. Increased δ2H values and Cl concentrations, and lower Na concentrations indicate those springs that are most at risk from surface contamination and overpumping. Elevated NO3 concentrations in a few springs indicate that these springs have already been contaminated during discharge.  相似文献   

11.
A number of thermal springs with temperature up to 64°C are found in the Western Cape Province of South Africa. The average δ13C value of gas (CO2+CH4) released at three springs is −22, which is consistent with an entirely biogenic origin for the C and supports previous investigations which showed that the springs are not associated with recent or nascent volcanic activity. Most springs issue from rocks of the Table Mountain Group, where faulted and highly jointed quartzites and sandstones of the Cape Fold Belt act as the main deep aquifer. The δD and δ18O values of the springs range from −46 to −18 and from −7.3 to −3.9, respectively. Although the thermal springs have isotope compositions that plot close to the local meteoric water line, their δD and δ18O values are significantly lower than ambient meteoric water or groundwater. It is, therefore, suggested that the recharge of most of the thermal springs is at a significantly higher altitude than the spring itself. The isotope ratios decrease wuth increasing distance from the west coast of South Africa, which is in part related to the continental effect. However, a negative correlation between the spring water temperature and the δ18O value in the thermal springs closest to the west coast indicates a progressive in increase in the average altitude of recharge away from the coast.  相似文献   

12.
The quaternary volcanic complex of Mount Amiata is located in southern Tuscany (Italy) and represents the most recent manifestation of the Tuscan Magmatic Province. The region is characterised by a large thermal anomaly and by the presence of numerous CO2-rich gas emissions and geothermal features, mainly located at the periphery of the volcanic complex. Two geothermal systems are located, at increasing depths, in the carbonate and metamorphic formations beneath the volcanic complex. The shallow volcanic aquifer is separated from the deep geothermal systems by a low permeability unit (Ligurian Unit). A measured CO2 discharge through soils of 1.8 × 109 mol a−1 shows that large amounts of CO2 move from the deep reservoir to the surface. A large range in δ13CTDIC (−21.07 to +3.65) characterises the waters circulating in the aquifers of the region and the mass and isotopic balance of TDIC allows distinguishing a discharge of 0.3 × 109 mol a−1 of deeply sourced CO2 in spring waters. The total natural CO2 discharge (2.1 × 109 mol a−1) is slightly less than minimum CO2 output estimated by an indirect method (2.8 × 109 mol a−1), but present-day release of 5.8 × 109 mol a−1 CO2 from deep geothermal wells may have reduced natural CO2 discharge. The heat transported by groundwater, computed considering the increase in temperature from the infiltration area to the discharge from springs, is of the same order of magnitude, or higher, than the regional conductive heat flow (>200 mW m−2) and reaches extremely high values (up to 2700 mW m−2) in the north-eastern part of the study area. Heat transfer occurs mainly by conductive heating in the volcanic aquifer and by uprising gas and vapor along fault zones and in those areas where low permeability cover is lacking. The comparison of CO2 flux, heat flow and geological setting shows that near surface geology and hydrogeological setting play a central role in determining CO2 degassing and heat transfer patterns.  相似文献   

13.
The CO2 gas reservoir sandstones in the Hailaer Basin contain abundant dawsonite and provide an ideal laboratory to study whether any genetic relationship exists between dawsonite and the modern gas phase of CO2. The origins of dawsonite and CO2 in these sandstones were studied by petrographic and isotopic analysis. According to the paragenetic sequence of the sandstones, dawsonite grew later than CO2 charging at 110–85 Ma. The dawsonite δ18O value is 7.4‰ (SMOW), and the calculated δ18O values of the water present during dawsonite growth are from −11.4‰ to −9.2‰ (SMOW). This, combined with the NaHCO3-dominated water linked to dawsonite growth, suggests meteoric water being responsible for dawsonite growth. The δ13C values of gas phase CO2 and the ratios of 3He/4He of the associated He suggest a mantle magmatic origin of CO2-rich natural gas in Hailaer basin. Dawsonite δ13C values are −5.3‰ to −1.5‰ (average −3.4‰), and the calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite are −11.4‰ to −7.3‰. These C isotopic values are ambiguous for the dawsonite C source. From the geological context, the timing of events, together with formation water conditions for dawsonite growth, dawsonite possibly grew in meteoric-derived water, atmospherically-derived CO2 maybe, or at least the dominant, C source for dawsonite. It seems that there are few relationships between dawsonite and the modern gas phase of CO2 in the Hailaer basin.  相似文献   

14.
Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together with He,was derived mainly from the mantle, indicating the accumulation of mantle-derived volatiles beneath the survey area. The δ^13C values of CO2, higher than those of the typical mantle-derived carbon and the isotopic composition of hot-spring-free CO2 in unequilibrium with dissolved CO2, are recognized only in the Rehai geothermal field, suggesting that there seems to be a still-degassing magmatic intrusion at depths, which provides mantle-derived volatiles to the hydrothermal system above. The accumulation of those volatiles has probably played an important role in triggering earthquakes in this region.In addition, the isotopic characteristics of He and C also indicate that the magmatic intrusion seems to have been derived from the MORB source, and could be contaminated by crustal materials during its upwelling through the continental crust.  相似文献   

15.
We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius.Vesuvius groundwaters are dilute (mean TDS ∼ 2800 mg/L) hypothermal fluids ( mean T = 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. δD and δ18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions.The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a δ13C ∼ 0‰ and R/Ra of ∼2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts.A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata-Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magma-derived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.  相似文献   

16.
Understanding the relationship between stable isotope signals recorded in speleothems (δ13C and δ18O) and the isotopic composition of the carbonate species in the soil water is of great importance for their interpretation in terms of past climate variability. Here the evolution of the carbon isotope composition of soil water on its way down to the cave during dissolution of limestone is studied for both closed and open-closed conditions with respect to CO2.The water entering the cave flows as a thin film towards the drip site. CO2 degasses from this film within approx. 10 s by molecular diffusion. Subsequently, chemical and isotopic equilibrium is established on a time scale of several 10-100 s. The δ13C value of the drip water is mainly determined by the isotopic composition of soil CO2. The evolution of the δ18O value of the carbonate species is determined by the long exchange time Tex, between oxygen in carbonate and water of several 10,000 s. Even if the oxygen of the CO2 in soil water is in isotopic equilibrium with that of the water, dissolution of limestone delivers oxygen with a different isotopic composition changing the δ18O value of the carbonate species. Consequently, the δ18O value of the rainwater will only be reflected in the drip water if it has stayed in the rock for a sufficiently long time.After the water has entered the cave, the carbon and oxygen isotope composition of the drip water may be altered by CO2-exchange with the cave air. Exchange times, , of about 3000 s are derived. Thus, only drip water, which drips in less than 3000 s onto the stalagmite surface, is suitable to imprint climatic signals into speleothem calcite deposited from it.Precipitation of calcite proceeds with time constants, τp, of several 100 s. Different rate constants and equilibrium concentrations for the heavy and light isotopes, respectively, result in isotope fractionation during calcite precipitation. Since Tex ? τp, exchange with the oxygen in the water can be neglected, and the isotopic evolution of carbon and oxygen proceed analogously. For drip intervals Td < 0.1τp the isotopic compositions of both carbon and oxygen in the solution evolve linearly in time. The calcite precipitated at the apex of the stalagmite reflects the isotopic signal of the drip water.For long drip intervals, when calcite is deposited from a stagnant water film, long drip intervals may have a significant effect on the isotopic composition of the DIC. In this case, the isotopic composition of the calcite deposited at the apex must be determined by averaging over the drip interval. Such processes must be considered when speleothems are used as proxies of past climate variability.  相似文献   

17.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

18.
采用水化学仪器自动记录、现场滴定和样品碳氧稳定同位素测试相结合等方法,对云南中甸白水台钙华景区的水化学和碳氧稳定同位素特征进行了综合分析。主要结论是:形成白水台钙华的泉水具有很高的钙和重碳酸根离子浓度,相应地,泉水的CO2分压显著高于土壤生物成因所能产生的CO2分压。结合泉水出露的地质条件及其碳稳定同位素特征(δ13C=-1.23‰)的分析,进一步发现,高CO2分压主要与深部地热成因的CO2有关,而非原来普遍认为的“是温暖湿润气候的产物”。可见,白水台钙华属于热成因类钙华。由此,根据白水台不同时代钙华氧稳定同位素组成的差异,对钙华形成时的水温进行了计算。结果发现自白水台钙华形成以来,水温变化高达11℃,即从最老(<35万年)钙华形成时的21℃降至现在的10℃。这可能与本地区强烈抬升导致的气温降低有关,也可能反映出地热对水温的影响在降低。此外,本文对用热成因类钙华进行古环境重建研究中值得注意的问题也做了讨论。这些问题包括放射性碳测年中“死碳”(来自深部碳酸盐碳和深部CO2)的干扰及由深源CO2和CO2自水中逸出导致的钙华13C富集,后者在利用类似热成因碳酸盐沉积的δ13C进行古植被重建时也是必须考虑的问题  相似文献   

19.
Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ13C of organic carbon was ~ ?12%., whereas at 900 ppm total inorganic C, the δ13C of similar species was ~ ?25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ13C values were ~ ?18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ13C values (to ?30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ13C of the original organic matter.The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to ?74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of the Precambrian can be inferred.  相似文献   

20.
Chemical and isotopic compositions have been measured for CO2-rich bubbling gases discharging from cold springs in Wudalianchi intra-plate volcanic area, NE China. Observed 3He/4He ratios (2–3 RA) and δ13C values of CO2 (−5‰ to −3‰) indicate the occurrence of a mantle component released and transferred to the surface by the Cenozoic extension-related magmatic activities. The CO2/3He ratios are in wide range of (0.4–97 × 109). Based on the apparent mixing trend in a 3He/4He and δ13C of CO2 diagram from all published data, the extracted magmatic end-member in the Wudalianchi Volcano has 3He/4He, δ13C and CO2/3He value of ∼3.2 RA, ∼−4.6‰ and ∼6 × 1010, respectively. These values suggest that the volatiles originate from the sub-continental lithospheric mantle (SCLM) in NE China and represent ancient fluids captured by prior metasomatic events, as revealed by geothermal He and CO2 from the adjacent Changbaishan volcanic area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号