首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful seeding of clouds in weather modification experiments essentially depends on the seeding time and dynamics, amount of seeding material and location of the initial seeding area. In the present study, we focus on the influence of the initial seeding zone location on the transport of seeding agent material into the target cloud. In addition, the inadvertent transport of seeding material is analysed. During weather modification activities, a lot of seeding material can be transferred far from the seeding zone in a downwind direction. The primary motivation for this research was to prove this statement. We use a three-dimensional, mesoscale cloud-resolving model to achieve our goal. We performed sensitivity tests with respect to the distance between the mass centres of the initial seeding area and the cloud. Different seeding scenarios are analysed. Our principal findings are as follows: (1) For distances between the mass centres of the initial seeding area and the cloud below 2.5 km, all seeding agent material would be activated after a short time. For distances above 10 km, most of the seeding agent would remain inactivated, because horizontal transport of the seeding agent becomes more important than transport induced by the main updraft. For these scenarios, the seeding agent is injected in the cold peripheral part of the cloud. (2) Sensitivity tests show that the inactivated seeding agent would remain close to the seeding area if the seeding is performed below cloud base. This effect occurs even for large distances between the seeding area and the target cloud (>20 km) due to low-level convergence. Thus, this seeding method suppresses the inert seeding material from being transferred far from the seeding zone. (3) The complete seeding material stays inactivated if the seeding is performed between the ?8 and ?12°C isotherms in front of the increased reflectivity zone. As a consequence, it would be transferred far from its initial area. The cloud would not be able to capture the seeding agent even during its greatest lateral extent.  相似文献   

2.
This study investigates the cloud macro- and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018, based on the observations from the aircraft, the Suomi National Polar-Orbiting Partnership (NPP) satellite, and the high-resolution Himawari-8 (H8) satellite. The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region. This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat, resulting in strengthened updrafts, enhanced radar echoes, higher cloud tops, and more and larger precipitation particles. In contrast, in the stratiform cloud region, after the Silver Iodide (AgI) seeding, the radar echoes become significantly weaker at heights close to the seeding layer, with the echo tops lowered by 1.4–1.7 km. In addition, a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km, and features such as icing seeding tracks appear. These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part. The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding; while in the stratiform region, a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding, which moves along the wind direction as width increases.  相似文献   

3.
过冷层状云中飞机播云有效区域的模拟研究   总被引:8,自引:2,他引:8  
余兴  王晓玲  戴进 《气象学报》2002,60(2):205-214
根据飞机人工增雨作业个例 ,利用层状云中催化剂输送扩散的三维时变模式 ,对过冷层状云中播云产生的有效区域、催化剂水平输送和扩散速率等进行了模拟研究。结果表明 :(1)飞机播云 4 5min线长 32 7km ,投影有效面积和有效体积在播云刚结束时 (5 0分 )达到极大 ,其值分别为 70 7km2 和 2 98.0km3 ,有效扩展宽度和厚度为 2 .5 1km和 0 .4 2km ;(2 )有效作用时段为 2 0~ 80min ,其间的投影有效面积平均值为 5 13.3km2 ,平均有效扩展宽度和厚度分别为 2 .4 1km和 0 .4 5km ;(3)在扩散作用下 ,投影有效面积和有效体积先随时间不断增加 ,达到极值后逐渐减小 ,播云结束 (5 5分 )后 ,云中的有效区域消失 ,其间的投影有效面积平均值为 389.7km2 ,平均有效扩展宽度和厚度分别为 2 .34km和 0 .4 4km ;(4)云中催化剂水平输送 1h的平均值达到 6 5km ,仅与风场有关。催化剂扩散速率 1h平均为 0 .82m/s,与风、温、湍流有关 ;(5 )在飞机增雨作业时 ,飞行方案的设计必须是严格科学的 ,以便进一步提高人工增雨的实效  相似文献   

4.
The objective of this study is to investigate the quality of clouds simulated by the National Centers for Environmental Prediction global forecast system (GFS) model and to examine the causes for some systematic errors seen in the simulations through use of satellite and ground-based measurements. In general, clouds simulated by the GFS model had similar spatial patterns and seasonal trends as those retrieved from passive and active satellite sensors, but large systematic biases exist for certain cloud regimes especially underestimation of low-level marine stratocumulus clouds in the eastern Pacific and Atlantic oceans. This led to the overestimation (underestimation) of outgoing longwave (shortwave) fluxes at the top-of-atmosphere. While temperature profiles from the GFS model were comparable to those obtained from different observational sources, the GFS model overestimated the relative humidity field in the upper and lower troposphere. The cloud condensed water mixing ratio, which is a key input variable in the current GFS cloud scheme, was largely underestimated due presumably to excessive removal of cloud condensate water through strong turbulent diffusion and/or an improper boundary layer scheme. To circumvent the problem associated with modeled cloud mixing ratios, we tested an alternative cloud parameterization scheme that requires inputs of atmospheric dynamic and thermodynamic variables. Much closer agreements were reached in cloud amounts, especially for marine stratocumulus clouds. We also evaluate the impact of cloud overlap on cloud fraction by applying a linear combination of maximum and random overlap assumptions with a de-correlation length determined from satellite products. Significantly better improvements were found for high-level clouds than for low-level clouds, due to differences in the dominant cloud geometry between these two distinct cloud types.  相似文献   

5.
    
It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three–dimensional puff trajectory model incorporating a mesoscale nonhydrostatic model has been formulated, and is applied to simulating the transporting and diffusive characteristics of multiple line sources of seeding agents within super–cooled stratus. Several important factors are taken into consideration that affect the diffusion of seeding materials such as effects of topography and vertical wind shear, temporal and spatial variation of seeding parameters and wet deposition. The particles of seeding agents are assumed to be almost inert, they have no interaction with the particles of the cloud or precipitation except that they are washed out by precipitation. The model validity is demonstrated by the analyses and comparisons of model results, and checked by the sensitivity experiments of diffusive coefficients and atmospheric stratification. The advantage of this model includes not only its exact reflection of heterogeneity and unsteadiness of background fields, but also its good simulation of transport and diffusion of multiple line sources. The horizontal diffusion rate and the horizontal transport distance have been proposed that they usually were difficult to obtain in other models. In this simulation the horizontal diffusion rate is 0.82 m s−1 for average of one hour, and the horizontal average transport distance reaches 65 km after 1 h, which are closely related to the background fields.  相似文献   

6.
采用中尺度数值模式WRFv3.5对2014年超强台风“威马逊”进行数值模拟。利用雷达、卫星、自动站逐时降水资料,对比单参数WSM6云方案和双参数WDM6云方案在模拟台风路径、强度、降水分布及水成物含量上的差异,分析雨滴粒子的谱型特征及微物理源、汇项对云中雨水含量的影响。与上海台风研究所的最佳路径数据对比显示,两方案均较好地模拟出了台风“威马逊”的移动路径,WDM6方案的整体路径误差更小;模拟的强度差异则较为显著,WDM6方案的海平面最低气压值偏高,强度偏弱。两方案模拟的累积降雨分布虽与自动站实测资料基本一致,但WDM6方案模拟的强降水概率偏高,弱降水概率偏低。两方案模拟的对流区雪、霰、雨水含量均大于TRMM卫星反演结果,且WDM6方案的对流云较多,总体雨水含量偏高;两方案均模拟出了雷达回波分布的整体特征,但眼区尺度偏大,WDM6方案在融化层以下缺少眼墙之外的弱回波区且大于39 dBz的强回波区偏多,同样显示了雨水含量(或尺度)偏大。由于WDM6方案为暖雨(云、雨水)双参数模式,对云滴活化、云雨转换及云、雨谱型有一定的改进,其能较合理地模拟出雨滴谱随台风发展的演变特征;模拟显示,云、雨滴的收集碰并及固态粒子的融化是雨水的主要源项,WDM6方案增加了云雨水自动转化率及雨水碰并云水率,导致该方案的空中雨水含量偏高,且随高度的降低快速减小;此外,由于WDM6方案使用简单的寇拉公式进行云滴活化,初始云凝结核数的变化即可造成雪、霰、云雨水含量的改变,故建议在具体大气气溶胶条件下,对方案中的云滴生成参数化过程做相应的调整。  相似文献   

7.
1. IntroductionMany projects and experiments of rain enhancement are carried out abroad. Most seeded cloud bodies are the convective or topographic clouds. The seeding agents are usually released near their bases and brought into the clouds by the updrafts. Whether the seeding material can reach the areas where cloud liquid water presents is emphasized. Tzivion et al.(1989) demonstrated that effective dispersal of seeding material strongly depends on the seeding altitude and the stage (time) …  相似文献   

8.
碘化银播撒对云和降水影响的中尺度数值模拟研究   总被引:11,自引:7,他引:4  
通过在WRF (Weather Research and Forecasting) 中尺度天气数值模式中引入碘化银与云相互作用过程, 建立了中尺度播撒碘化银数值模式。研究了碘化银播撒对于中尺度对流天气过程中云和降水的影响, 研究了不同播撒部位、 播撒时间和播撒剂量情况下碘化银的扩散、 传输及其对云中水成物和降水量的影响。研究结果表明, 碘化银在云中的扩散传输过程与播撒的位置有很大关系, 在最大上升气流区播撒的碘化银能随着气流更快地扩散到云体上部过冷水含量丰富的区域, 播撒在云上层入流区和云下层入流区的碘化银扩散到云中过冷水区需要时间更长, 同时有大部分停留在云体边缘。碘化银能与云中过冷水相互作用, 消耗过冷水使云中冰晶数浓度明显增加, 从而使霰粒子转化减少, 过冷水更多地转化为雪粒子, 过冷水凝结释放出潜热使上升气流增强, 促进了对流发展。由于雨水含量的增加, 地面降水也出现增加。碘化银播撒率对地面降水量影响很大, 当播撒率为0.6 g/s时, 播撒对降水的影响时间超过4小时, 增雨的效果更好。播撒率为0.1 g/s时增雨效果不明显, 当播撒率为1.2 g/s 时, 对总降水可能出现抑止作用。对比碘化银播撒率为0.6 g/s时12小时地面增雨量, 在云上层入流区播撒碘化银试验中, 地面增雨量比对最大过冷水含量区的催化试验提高了48.7%, 最大上升气流区播撒试验增雨效果最好, 地面增雨量比在最大过冷水区域播撒提高了72.1%。  相似文献   

9.
层状云系是进行人工增雨开发利用空中云水资源的重要对象,增雨作业需要有科学可行的技术指标来指导实际作业的科学实施,而合理准确评估人工增雨作业的效果也是需要解决的重要课题,通过数值模式合理地仿真模拟实际催化作业的过程,进而研究增雨作业后云和降水的一系列宏微观特征的变化及其机理,是建立和改进催化作业技术的必要途径,也是评估实际人工增雨作业效果的有效手段。本文使用三维中尺度冷云催化模式对2014年4月15日河北省一次层状云降水的飞机催化作业过程进行了仿真模拟,力图对实际作业过程进行合理再现,通过对模拟结果的分析,研究飞机播撒的AgI(Silver iodide)催化剂在空中的扩散传输特征,分析催化对云和降水宏微观特性的影响,并对此次飞机催化作业的增雨效果进行评估。研究结果表明,播撒的AgI催化剂烟羽扩展的水平尺度可达数十公里以上,垂直方向上,大部分AgI粒子则主要集中在作业层上下约1 km的厚度范围内,AgI粒子的向上输送明显强于向下的输送;催化后云中的冰晶和雪粒子明显增加,导致催化模拟前期的霰增长受到抑制,之后随着霰碰并雪过程及零度层附近冰相粒子淞附过程的增强,云中霰的总量逐渐增加;催化作业后,催化云的雷达回波强度有明显增强,且随时间变化表现出不同的结构特征;催化导致地面降水出现先减少后增加的时间变化特征,催化后3小时,作业影响区向作业区下游扩展100 km以上,总体呈现减雨—增雨的区域分布特征;数值模拟评估表明,整个评估区内的净增雨量达到3.6×107 kg,平均增雨率为1.1%,暖层霰粒浓度和尺度的增加是降水增加的主要原因。由于作业目标云系的催化条件一般,而播撒的AgI剂量偏大,造成增雨作业效果偏低。  相似文献   

10.
Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth’s radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds.  相似文献   

11.
The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) has been used to investigate the extra-area effects of silver iodide (AgI) seeding on stratiform clouds performed at the supercooled layer.A bulk two-moment microphysical scheme and the new software package for silver iodide are incorporated in MM5.Extra conservation equations are applied to trace the seeding agent,which is transported along the flow field and interacts with the supercooled cloud fields.In this study,the model was run using three nested grids,with 3.3 km × 3.3 km horizontal resolution in the finest grid.The model results showed that seeding with AgI at the 5 to 15℃ levels had microphysical effects on the simulated clouds and that the simulation produced a longer-lasting seeding effect because of the transport of the seeding agent by upper-level winds.Most of the AgI particles acted as deposition nuclei,and the deposition nucleation process contributed mostly to additional cloud ice formation in this study.The results showed that more precipitation results from seeded than unseeded case,and the precipitation was redistributed downwind of the target.Augmented precipitation (varying from 5% to 25% downwind) was confined in space to within 250 km of the seeding target and in time to the 3-h period after initial seeding.  相似文献   

12.
层状云中飞机人工增雨作业间距的研究   总被引:2,自引:1,他引:1  
余兴  戴进 《大气科学》2005,29(3):465-474
利用数值试验方法, 设计了4 km, 8 km和20 km 三种飞机增雨播云间距方案, 研究了不同间距对有效区域的影响.从结果分析发现, 实际形成的播云线受水平风场输送作用, 与设计的航线产生了偏离; 不同播云间距形成的投影有效面积、有效作用时段不同, 其时空分布及投影有效面积所对应的地面位置也不尽相同.另外, 提出了增雨效益的数学表达式.效益分析表明, 在相同作业条件下, 8 km间距的增雨效益比20 km间距提高31%, 比4 km间距提高了23%, 4 km间距比20 km间距提高6%, 其物理原因主要是并合作用.最后, 针对交叉和平行播云方案, 提出了设计最佳播云间距的数学表达式.  相似文献   

13.
针对人工影响天气飞机播云作业效果评估需求,提出一种基于拉格朗日粒子扩散模式FLEXPART-WRF的催化剂催化范围模拟评估方法.以典型催化剂碘化银为例,开发催化剂物理化学特性参数清单模块,结合飞机播云特点和模式源项特点,将飞机不规则线性播撒方式离散化为连续移动点源播撒方式,实现模式对飞机播云的模拟能力.通过对一次飞机播云作业的模拟试验,证实了模拟评估方法的可行性和有效性.  相似文献   

14.
毕明明  邹晓蕾 《气象科学》2022,42(4):457-466
极轨气象卫星S-NPP、MetOp-A和FY-3B上搭载的微波湿度计观测资料可以反映出台风周围水汽和云雨结构。本文使用权重函数峰值在800 hPa附近的微波湿度计通道观测资料和ERA5再分析资料全天空模拟亮温,以飓风Sandy和Isaac为例,对用方位谱台风中心位置定位方法得到的观测和模拟中心位置进行了比较。利用下午星S-NPP搭载的先进技术微波探测仪(Advanced Technology Microwave Sounder,ATMS)和上午星MetOp-A搭载的微波湿度计(Microwave Humidity Sounder,MHS)观测亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差35.8 km(32.9 km),但用ERA5全天空模拟亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差73.3 km(82.1 km)。若按照热带风暴和台风等级来划分,ATMS和MHS观测和模拟亮温得到的台风中心位置与最佳路径的平均距离对热带风暴分别是36.5 km和105.9 km,对台风分别是25.8 km和56.4 km。若用FY-3B搭载的微波湿度计(以MWHS表示)替换ATMS,所得结果类似。ERA5作为全球大气再分析资料的典型代表,用方位谱台风中心位置定位方法得到的台风中心位置误差较大的原因是ERA5再分析资料全天空模拟亮温在台风中的分布结构与观测亮温相差较大,而模拟亮温与冰水路径分布结构极为相似。研究对台风数值预报中的全天空模拟亮温资料同化具有一定的参考意义。  相似文献   

15.
Development of a cumulonimbus cloud with its top above 18 km in central India is analyzed. The process is observed with a radar. A 1.5 D numerical model is used to simulate the cloud development. The cloud produced very low radar echo, which implies that large cloud particles were absent. Both observations and simulation show that an extremely intense growth of the cloud was associated with its merge with feeder cells. The seeding of feeder cells caused a change in the direction of the cloud movement.  相似文献   

16.
利用中尺度数值模式WRF-ARW(V3.2)对2009年4月18-19日发生在张家口地区的一次积层混合云降水进行了模拟,并结合观测资料从不同尺度对这次降水过程进行了对比分析.结果表明:700 hPa西风槽、850 hPa低涡是影响这次降水的主要天气系统,来自南方的暖湿空气和西北内蒙古低涡带来的水汽是这次降水的主要水汽来源,两股水汽在张家口附近低层出现了大尺度辐合,有利于该地区云系的发展、降水的形成;降水云系呈东北-西南向带状分布,带长约1 000 km,带宽300km,在大片的云带中分布着很多个小的高值中心,中心区域一般在几十千米;结合雷达回波可以看到在均匀的回波层中镶嵌着柱状对流回波,具有典型的积层混合云降水回波特征;沿着雷达回波做剖面,发现云中云水含量分布无论是水平方向还是垂直方向都是不均匀的,雨水的大值中心与上层的霰、雪的大值中心相对应,中心水平范围在1020 km.  相似文献   

17.
Considered is a case of the development of the cumulonimbus cloud (Cb) in the southwestern part of Saudi Arabia under the conditions of heavy pollution of atmosphere with natural aerosol. Using the ground-based radar and satellite radiometric instruments, the characteristics of the Cb are obtained for the cloud top height of more than 14 km and maximum reflectivity of 58 dBZ. To measure the precipitation rate using the radar data, the Z-I ratio obtained for the area under study was applied. To compute the precipitation rate, the results of the sounding with the SEVERI radiometer installed on the Meteosat-8 satellite were also used. Carried out are numerical experiments on the simulation of aerosol effects on the evolution of the cloud under study. The development of the cloud at the presence of background aerosol was simulated as well as at high aerosol concentration. Three cases are considered: aerosol is a passive admixture; aerosol has hygroscopic properties; aerosol has ice-forming properties. It is demonstrated that the most considerable effects on the cloud evolution are caused by the intensification of ice formation under the influence of aerosol; not only the time distribution of precipitation rate changes but also the amount of precipitation increases.  相似文献   

18.
Summary The three-dimensional mesoscale cloud-resolving model ARPS (Advanced Regional Prediction System) was used to investigate the dispersal of an inert seeding agent within a cumulonimbus (Cb) cloud developing from two different initial states. In this paper, we stress the influence vortices in the cloud have on seeding agent dispersion. If a strong directional ambient wind shear is present in the lowest layer, a vortex pair formed at the flanks of the simulated cloud. Following the velocity field, a considerable amount of the injected seeding agent would be thrown out to the rear of the cloud, where both updrafts associated with vortices and downdrafts occurred. After a short time the agent was present only in the cloud periphery. If the Cb cloud developed under conditions where directional ambient wind shear did not exist, seeding agent dispersion would be quite different. In this case, almost all the seeding agent was transported into the main updraft, while the residence time of the agent within the cloud was longer due to the weaker cloud dynamics. Therefore, we must pay attention to whether or not the cloud contains vortices when we make the decision where to seed. This is necessary in order to minimize the loss of seeding material.  相似文献   

19.
气象卫星资料在飞机人工增雨效果评估中的应用   总被引:4,自引:1,他引:4  
王勇  段昌辉  徐军昶  邓芳莲 《气象》2002,28(11):26-28
在2000年3月14日飞机人工影响天气作业过程中,极轨气象卫星实时遥感探测提供了人工增雨情况的一些证据。分析了作业后催化剂扩散情况,并且就风对催化剂的输送,地面增雨效果进行了探讨。初步结果:(1)本次过程在作业1小时23分钟后,最大自由运动扩散宽度11km,催化剂自由运动扩散区约为2508km^2,在云顶形成约1505km^3的塌陷区。(2)卫星资料分析,风的输送作用区约为7500km^2,为自由运动扩散区的3倍,是催化剂扩散的主要因素。  相似文献   

20.
减弱对流云降水的AgI催化原理的数值模拟研究   总被引:3,自引:0,他引:3  
楼小凤  孙晶  史月琴  张邢 《气象学报》2014,72(4):782-793
在对流云模式中增加了AgI两个预报量,耦合了考虑受水汽过饱度和温度影响的4种核化机制的AgI催化模块,使其具备了对AgI类催化剂的模拟能力,能够研究AgI类催化剂对对流云系统的影响。利用该模式对一次华南对流云降水过程进行了AgI催化数值模拟试验,对人工减缓对流云降水的可能性及原理进行了研究。模拟结果表明,在适当的时机对适当的部位进行大剂量的催化,可以减少总降水量,也可以减少最大降水中心的雨强。当催化浓度达到2×10~8 kg~(-1)时,可以减少32%的降水量,具备有效减缓对流云降水的可能性。大剂量催化后,大量的AgI粒子在冷区核化后,消耗了大量的过冷水。催化后霰粒子的落速和雨水的落速减小。催化阶段由于霰融化成雨水减少而使降水减弱。催化结束后在霰融化成雨水增多的情况下,雨水的蒸发大幅增加,从而导致了降水量的持续减少。AgI在模拟的强对流云中主要以受过饱和度影响的凝结冻结和催化剂长时间作用的浸没冻结这两种方式成核。研究所用催化方法在外场作业中具有技术可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号