首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
Seasonal fishing closures are often used in fisheries management to conserve overfished stocks.As one of the unintended consequences,fishermen often contend for maximizing catches immediately after reopening fisheries.The resultant large catch landings in a short time period(i.e.,pulse fishing)may undermine the benefit of closure.We implemented an end-to-end model OSMOSE-JZB(Object-oriented Simulator of Marine ec OSystem Exploitation OSMOSE)modelling ecosystem in the Jiaozhou Bay located in China to evaluate the impact of pulse fishing on the effectiveness of seasonal closure at levels of fish community,population,and individual.Our study demonstrated that the three-month closure was successful in conserving fish stocks.There were small variations on ecological indicators(i.e.,total biomass of the community,mean trophic level of the community,mean trophic level of the catch,and Shannon-Wiener biodiversity index)when pulse fishing occurred.Pulse fishing seemed not to result in a great shift in community structure.Compared to other species,the biomass of two large predatory fishes were more susceptible to pulse fishing.Pulse fishing could change the pressure of predators to fish stocks via food webs,especially for young individuals.Our simulations indicate that we can improve the effectiveness of seasonal closure by managing pulse fishing.Although the results derived in this study may be specific to the target ecosystem,the general approach is applicable to other ecosystems when evaluating fishing impacts.  相似文献   

2.
Based on the measurements of particulate phosphorus(PP) in the Jiaozhou Bay from May 2003 to April 2004,the spatial distribution,seasonal variation and biogeochemical characteristics of PP were investigated to understand the fates and roles of phosphorus in the Jiaozhou Bay ecosystem.The concentration of the total PP ranged from 0.07 to 2.09 μmol/dm3.The concentration of POP was from 0.01 to 1.83 μmol/dm3,with an average of 0.32 μmol/dm3,which accounted for 49.6% in total PP.The concentration of PIP was fro...  相似文献   

3.
A nitrogen and phosphorus dynamic model of mesocosm pelagic ecosystem was established according to the summary and synthesis of the models available, in which seven state variables (DIN, PO4-P, DON, DOP, phytoplankton, zooplankton and detritus) were included. Logically it had five modules--phytoplankton, zooplankton, dissolved inorganic nutrients, dissolved organic nutrients and detritus. The results showed that this model could simulate the variations of DIN, PO4-P, DON, DOP, POC and phytoplankton biomass in pelagic ecosystem in mesocosm properly, based on the site experiment data in the Jiaozhou Bay in the autumn of 1999 and the summer of 2000. Not only the logical structure but also the model parameters were feasible, and about 20 parameters were made to fit for the Jiaozhou Bay during the simulation. All of these are necessary to study the control mechanism of nutrients biogeochemical cycling in the Jiaozhou Bay and other China' s coastal waters.  相似文献   

4.
Single-species management ignores the interactions between species, and ecosystem-based fisheries management(EBFM) has become a main method to fisheries management. Understanding food web structures and species interactions is essential for the implementation of EBFM and maintenance of ecosystem functions.Overfishing is one of the main reasons behind the depletion, which could even lead to the depletion of some target species in local areas. So understanding the impacts of species depletion on f...  相似文献   

5.
The spatial and temporal characteristics of trophic structure of fish communities in the southern Huanghai Sea were examined based on the data sampled from bottom trawl surveys conducted during the autumn of 2000 and the spring of 2001. Hierarchical agglomerative cluster method and bootstrap randomization were used to identify significant trophic groups for each fish assemblage in the southern Huanghai Sea. A total of six major trophic groups were identified within this system, which classified predators based upon location in the water column or prey size ( i. e. , benthic to pelagic predators or fish to small invertebrate prey predators). The similarity level used to identify significant trophic groups in each assemblage ranged from 24% to 34%. Although planktivores were the dominant trophic group in each assemblage (60% - 79% ), there were spatial and temporal variations in the trophic structure, which reflected the differences in the abundance and availability of dominant preys. Simplified food webs were constructed to evaluate the most important trophic relationships between the dominant prey taxa and the fishes in each assemblage within this system. Although there were some differences in the key prey species among different food webs, pelagic prey items (mainly euphausiids and copepods) represent the most important energetic link between primary producers and higher trophic level predators. The trophic level for most fishes was between 3 and d, and the weighted mean trophic level for each assemblage ranged from 3.3 to 3.4. Compared with previous study in the mid-1980s, there was an obvious downward trend in the trophic level for most fish species, which resulted mainly from the fluctuation in key prey species in the Huanghai Sea. The decrease in the importance of Japanese anchovy seems to be offset by other abundant prey species such as Euphausia pacifica and copepods ( mainly Calanus sinicus ) .  相似文献   

6.
Nematode assemblage composition, trophic structure and biodiversity were followed over an annual cycle in a sandy beach of the Taiping Bay of Qingdao, China. Nematode assemblage in the sandy beach maintained a high genus diversity (75 genera). Mlero- laimus and Bathylaimus were the dominant genus of the nematode assemblage, accounting for 66% of the total nematode abundance. The nematodes' dominant trophic structure changed seasonally as a response to the seasonal changes in food quality. Epigrowth-feeder nematodes (2A) were the dominant trophic groups in the trophic structure with the highest abundance in spring because of phytoplankton bloom, while the feeding type ( 1 B) showed higher abundance in summer that was due to the increasing of sediment detritus after spring bloom. Furthermore, species diversity and evenness calculated on nematodes identified to the genus level displayed significant temporal changes, which was also reflected by the index of trophic diversity. According to the cluster analysis, the nematode community structure of the whole year was clearly separated into two periods (A and B). Biota-Envlron- ment matching (BIOENV) results showed that seawater temperature, sediment Chl a and grain size were responsible for the nema- tode community structure variation in spring and summer period (Period A). However, seawater/interstitial water temperature, interstitial water dissolved oxygen concentration,interstitial water salinity, and sediment Ph a a were more important in constructing the autumn and winter period (Period B) nematode community structure.  相似文献   

7.
Zooplankton plays an important role in aquatic food webs by fluxing of energy from primary producer to subsequent trophic levels in the food chain. The annual pattern of zooplankton communities and potential environmental drivers were studied in the Kohelia channel, Bangladesh from summer 2014 to spring 2015. Samples were collected using net at a depth of 1 m. A total of 32 species belonged to 18 orders, 27 families and 15 taxonomic groups were identified. Of these species, 22 distributed in all four seasons of which 8 were dominant and highly contributing to the total communities. Species number peaked in summer next to winter and fall in spring while maximum abundance was in summer and minimum in spring. Multivariate analyses showed that there was a clear annual pattern in the zooplankton communities. Species diversity and evenness peaked in spring but fall in autumn while the high value of species richness was found in winter. Biological-environmental best matching (BIO-ENV) analyses conformed that community pattern of zooplankton was mainly driven by transparency salinity, and temperature individually or combined with water nutrients. These results demonstrate that annual pattern of the zooplankton community shaped by channel environmental factors in subtropical channel ecosystems, thus might be used for community-based subtropical coastal water bioassessment.  相似文献   

8.
An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis(PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluorescence excitation-emission matrix(EEM) of 60 algae species belonging to five divisions and 11 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. By the 11 fluorescent components, the algae species at different growth stages were classified correctly at the division level using Bayesian discriminant analysis(BDA). Then the reference fluorescent component ratio matrix was constructed for CHEMTAX, and the EEM–PARAFAC–CHEMTAX method was developed to differentiate algae taxonomic groups. The correct discrimination ratios(CDRs) when the fluorometric method was used for single-species samples were 100% at the division level, except for Bacillariophyta with a CDR of 95.6%. The CDRs for the mixtures were above 94.0% for the dominant algae species and above 87.0% for the subdominant algae species. However, the CDRs of the subdominant algae species were too low to be unreliable when the relative abundance estimated was less than 15.0%. The fluorometric method was tested using the samples from the Jiaozhou Bay and the mesocosm experiments in the Xiaomai Island Bay in August 2007. The discrimination results of the dominant algae groups agreed with microscopy cell counts, as well as the subdominant algae groups of which the estimated relative abundance was above 15.0%. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch. The fluorometric technique has the ability to correctly identify dominant species with proper abundance both in vivo and in situ.  相似文献   

9.
Food differentiation among coexistent species in the field is important strategy for copepods to acquire materials and maintain population stabilization.In situ diet analysis of co-occurring six copepod species in coral waters of the Sanya Bay was conducted using a PCR protocol based on 18 S ribosomal gene.Various prey organisms were uncovered,including dinoflagellate,diatom,green algae and plant,protozoa and metazoan.All these spatially coexisting six species showed different dietary diversity,with the food niche breadth(B)ranging from 1.00(Temora turbinate in morning)to 10.68(Calanopia elliptica in night).While food overlap between all these copepods were low,with the average value of the diet niche overlap index being approximately 0.09.Even temporally co-existing species sampled from the same time point fed on different groups of prey items with the food overlap index of 0.04 to 0.07 in midday and night but 0 in morning.As the most important dominant copepod in the Sanya Bay,Subeucalanus subcrassus seems to be capable to regulate its feeding,by exhibiting a rhythm of herbivorous feeding in midday and carnivorous feeding in morning and night,to better coordinate with other competitors for utilization of food resources.For most copepods,none of the prey items belonged to the dominant phytoplankton in the ambient water,indicating that copepod can better their survival by widening the choice of potential food resources in food limited environment.The dietary separation observed here might be important strategy for copepod to maintain population stabilization and thriving in the Sanya coastal waters.  相似文献   

10.
The biomass and size fraction of phytoplankton in terms of chlorophyll a(Chl a) was measured during four cruises conducted in April, July, October 2013 and January 2014 in mariculture area, the Sanggou Bay, China.Results show that total Chl a levels in the surface seawater of the Sanggou Bay generally range from 0.10 to 20.46μg/L, with an average value of 2.13 μg/L. Nano-phytoplankton was the most important size-fraction and accounted for about 65.1% of total Chl a. In order to evaluate the importance of the "protozoan trophic link" for energy transfer from the microbial loop to filter-feeding feeders, Zhikong scallop Chlamys farreri was then offered a natural planktonic community as potential prey. Results show that scallops obtained carbon source from natural plankton with the rate of 11 033.05 μg/(g·d). Protists(nanoflagellates and ciliates) were the dominant source of carbon retained by scallop(48.78%). The microbial loop provided 58.45% of the carbon source for farmed scallops. These results indicate that the microbial loop represent a valuable trophic resource in mariculture system of the Sanggou Bay.  相似文献   

11.
根据2021年渔业资源调查数据构建了含有23个功能组的舟山海域生态系统Ecopath模型,分析了当前舟山海域生态系统总体特征并估算了褐菖鲉在舟山海域的生态容量。结果表明:舟山海域生态系统营养级范围为1.000 (浮游植物和有机碎屑)~4.277 ( 鳐类),石首鱼科、虾类和 鳐类为舟山海域生态系统中的关键种。碎屑食物链和牧食食物链是舟山海域生态系统主要的食物链。碎屑和浮游植物对食物网的贡献率分别为61.32%和38.69%。始于浮游植物和碎屑的营养传递效率分别是9.34%和10.50%,系统总营养传递效率是9.82%。总初级生产量/总呼吸量为2.26,系统连接指数为0.372,系统杂食性指数为0.222。生态系统总体特征反映了舟山海域生态系统的成熟状态较低,生态系统处于不稳定阶段,容易受到外界环境变化的影响。根据模型估算,当褐菖鲉生物量增加至8.6倍时,褐菖鲉达到生态容量0.007 95 t/km2,此时生态系统仍保持平衡,且生态系统总体特征基本稳定。因此,褐菖鲉在舟山海域尚有较大增殖潜力。  相似文献   

12.
为改善热带珊瑚岛礁型海洋牧场的珊瑚礁生境,实现生物资源的养护和渔业资源的产出功能,在对海参等高值经济种开展底播增殖前,科学评估其生态容量是防止引发海洋牧场生态风险的重要保证。运用生态系统模型法评估了三亚蜈支洲岛热带珊瑚岛礁海洋牧场花刺参(Stichopus monotuberculatus)的底播增殖容量。根据2020~2021年蜈支洲岛海洋牧场近岛区渔业资源调查与环境因子数据,运用Ecopath with Ecosim 6.6软件构建了该海域的生态系统营养通道模型。研究表明:生态系统各功能组营养级范围介于1~3.52,系统的食物网结构以牧食食物链为主,总能流中有43%的能量来源于碎屑功能组,其在系统总能流中有重要地位。系统的总平均能量传递效率为9.353%,略低于林德曼能量传递效率(10%)。总初级生产量/总呼吸量为3.726,总初级生产量/总生物量为28.834,系统连接指数为0.256,杂食性指数为0.120,系统Finn''s循环指数和平均路径长度分别为2.485%和2.379,表明近岛区生态系统食物网结构较为简单,且系统稳定性和成熟度偏低,易受外界干扰。根据模型评估的花刺参增殖生态容量为110.21 t/km2,是现存量的206 倍,有较大增殖空间,并且达到生态容量后碎屑组的能量再循环利用效率将显著增加,营养级结构能得到进一步优化,系统稳定性及成熟度将有所提高。基于研究结果,可适当采捕与花刺参生态位相近的生物,同时增殖放流其他处于不同营养层次的经济种,从而减少种间竞争,有效利用系统冗余能量,进而扩大花刺参的生态容量,实现海洋牧场的健康可持续发展。  相似文献   

13.
基于2018年海州湾及邻近海域的渔业资源底拖网调查数据,运用Ecopath with Ecosim 6.5 (EwE)软件构建由26个功能群组成的海州湾及邻近海域生态系统Ecopath模型,对现阶段该生态系统的营养结构、营养相互关系和系统总特征等进行分析,旨在为实施基于生态系统的渔业管理提供理论依据。结果表明:海州湾及邻近海域生态系统各功能群的营养级范围为1.00~4.19,其中鱼类营养级范围较广,为3.22~4.19;浮游动物和其他软体动物受初级生产者和捕食者的双重作用,处于重要的营养位置;生态系统总体特征分析显示,该生态系统的总初级生产量与总呼吸量的比值为7.096,总初级生产量与总生物量的比值为56.866,系统的连接指数和系统杂食指数分别为0.429和0.204,说明该生态系统目前处于不成熟、不稳定的状态,容易受外界扰动的影响。本文通过对海州湾及邻近海域生态系统模型进行研究,解析了该海域营养结构和系统发育状况,将为海州湾渔业资源的可持续利用和科学管理提供理论依据。  相似文献   

14.
1IntroductionThe Beibu Gulf is a natural semiclosed conti-nental sea of the South China Sea,which is situatedat17°00′~21°45′N,105°40′~110°10′E,and sur-rounded by China and Vietnam(see Fig.1).It hasa subtropic monsoon climate with an average winter  相似文献   

15.
The Huizache–Caimanero coastal lagoon complex on the Pacific coast of Mexico supports an important shrimp fishery and is one of the most productive systems in catch per unit area of this resource. Four other less important fish groups are also exploited. In this study, we integrated the available information of the system into a mass-balance trophic model to describe the ecosystem structure and flows of energy using the E approach. The model includes 26 functional groups consisting of 15 fish groups, seven invertebrate groups, macrophytes, phytoplankton, and a detritus group. The resulting model was consistent as indicated by the output parameters. According to the overall pedigree index (0.75), which measures the quality of the input data on a scale from 0 to 1, it is a high quality model. Results indicate that zooplankton, microcrustaceans, and polychaetes are the principal link between trophic level (TL) one (primary producers and detritus) and consumers of higher TLs. Most production from macrophytes flows to detritus, and phytoplankton production is incorporated into the food web by zooplankton. Half of the flow from TL one to the next level come from detritus, which is an important energy source not only for several groups in the ecosystem but also for fisheries, as shown by mixed trophic impacts. The Huizache–Caimanero complex has the typical structure of tropical coastal lagoons and estuaries. The TL of consumers ranges from 2.0 to 3.6 because most groups are composed of juveniles, which use the lagoons as a nursery or protection area. Most energy flows were found in the lower part of the trophic web.  相似文献   

16.
依据现有研究提供的信息,在孟加拉国孟加拉湾(BoB)新划定的超过90 000 km2的海域基于Ecopath方法利用2016年7月至2017年6月的数据构建了该生态系统的营养通道模型。对食物网中营养级从1(主要生产者和碎屑)到3.45(鲨鱼)的各功能群之间的营养相互作用进行评估,所研究的共19个功能群被认为代表了其中所有的营养级。大多数消费者的生态营养转换效率(EE)超过0.80;表明这是一个被高度利用的生态系统,并且从低营养级到高营养级有较高的能量转换效率。此外,整个生态系统的净效率(0.0018)和能量转换效率(11.12%)标志着当前这一"正在发展中的生态系统"已趋向成熟。生态系统的冗余度(64.6)和聚合度(35.4)也表明了这一生态系统的稳定性。因此,本研究认为这一海域具有显著的后备力量面对压力情况并有能力快速恢复到初始状态。  相似文献   

17.
Tapong Bay, a eutrophic and poorly flushed tropical lagoon, supports intensive oyster culture. Using the Ecopath approach and network analysis, a mass-balanced trophic model was constructed to analyze the structure and matter flows within the food web. The lagoon model is comprised of 18 compartments with the highest trophic level of 3.2 for piscivorous fish. The high pedigree index (0.82) reveals the model to be of high quality. The most-prominent living compartment in terms of matter flow and biomass in the lagoon is cultured oysters and bivalves, respectively. The mixed trophic impacts indicate that phytoplankton and periphyton are the most-influential living compartments in the lagoon. Comparative analyses with the eutrophic and well-flushed Chiku Lagoon and non-eutrophic tropical lagoons show that high nutrient loadings might stimulate the growth and accumulation of phytoplankton and periphyton and therefore support high fishery yields. However, net primary production, total biomass, fishery yields per unit area, and mean transfer efficiency of Tapong Bay were remarkably lower than those of Chiku Lagoon. The lower transfer efficiency likely results from the low mortality of cultured oysters and invasive bivalves from predation or the lower density of benthic feeders constrained by the hypoxic bottom water as a result of poor flushing. This might therefore result in a great proportion of flows to detritus. However, the hypoxic bottom water might further reduce the recycling of the entering detritus back into the food web. In contrast to many estuaries and tropical lagoons, poor flushing of this eutrophic tropical lagoon might induce a shift from detritivory to herbivory in the food web.  相似文献   

18.
Mass-balance models (Ecopath) of the ecosystem before and after collapse (1959-1961 and 1997-1999) of fish stocks were developed with Ecopath software to compare the differences in ecosystem structure, functioning and ecosystem properties of the Beibu Gulf. The model includes 20 functional groups consisting of commercial important fish groups and other ecologically important groups in the ecosystem such as zooplankton, phytoplankton, and detritus. Results indicated that biomass and catches of the system have changed drastically between the 1960s and 1990s, especially for the high trophic levels (TL). The biomass of level V in the early 1960s was 32 times higher than that of the late 1990s, however, the biomass of level I and II in the 1990s was higher than the 1960s. Despite the higher catches in the 1990s, fishing was ecologically less expensive during the 1990s than 1960s due to small fish catches were large. Mean transfer efficiency decreased from for 10.2% in the 1960s to 9.1% in the 1990s periods. According to the summary statistics, the parameters of net system production (NPS) and total primary production to total respiration ratio were increased from 1.013 in the 1960s to 2.184 in the 1990s, however, the connectance index (CI), system omnivore index, Finn’s cycling index and mean path length decreased from the 1960s to the 1990s. The overhead (O) was higher in the 1990s model while the ascendancy (A) decreased nearly 10% in the 1960s. The ‘Keystoneness’ result indicate that zooplankton was identified as keystone species in 1960s, however, the elasmobranches was keystone species in the late 1990s. The average trophic level of the fishery decreased from 3.32 in the 1960s to 2.98 in the 1990s, and exhibits classic symptoms of “fishing down the food web”. All the indices of the system attributes suggests that the Beibu Gulf ecosystem in 1960s was found to be more mature than in the 1990s due to the collapse of demersal ecosystem, and the ecosystem changed from being dominated by long-lived, high trophic level groundfish dominated system toward a system with small-size and low-value species over fifty years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号