首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of six heavy metals were studied in five living coral species and their fossil counterparts collected along the Jordanian Coast of the Gulf of Aqaba. The study aimed at investigating the validity of using coral skeletons as bioindicators for environmental pollution by heavy metals in the Gulf of Aqaba, Red Sea. The skeletal samples of the collected corals were acid digested and analyzed for Cd, Cu, Fe, Mn, Pb, and Zn content using flame atomic absorption spectrophotometer. The results obtained have shown that higher concentrations of heavy metals were found in coral skeletons from areas hosting intense developments and human activities. The massive Porites sp. coral tended to accumulate the highest metal concentrations among the other species (except for Mn). This was due to interspecific differences or selectivity of heavy metals between different coral species. It was noteworthy that fossil coral species recorded higher average metal concentrations than their living counterparts; this was attributed to surface contamination due to prolonged burial of the fossil corals in sediment over the years. The study concluded that corals (specially the massive Porites species) are vulnerable to the accumulation of high concentrations of heavy metals in their skeletons and therefore can serve as proxies to monitor environmental pollution.  相似文献   

2.
Skeletal cadmium-to-calcium (Cd/Ca) ratios in hermatypic stony corals have been used to reconstruct changes in upwelling over time, yet there has not been a systematic evaluation of this tracer’s natural variability within and among coral species, between depths and across environmental conditions. Here, coral skeletal Cd/Ca ratios were measured in multiple colonies of Pavona clavus, Pavona gigantea and Porites lobata reared at two depths (1 and 7 m) during both upwelling and nonupwelling intervals in the Gulf of Panama (Pacific). Overall, skeletal Cd/Ca ratios were significantly higher during upwelling than during nonupwelling, in shallow than in deep corals, and in both species of Pavona than in P. lobata. P. lobata skeletal Cd/Ca ratios were uniformly low compared to those in the other species, with no significant differences between upwelling and nonupwelling values. Among colonies of the same species, skeletal Cd/Ca ratios were always higher in all shallow P. gigantea colonies during upwelling compared to nonupwelling, though the magnitude of the increase varied among colonies. For P. lobata, P. clavus and deep P. gigantea, changes in skeletal Cd/Ca ratios were not consistent among all colonies, with some colonies having lower ratios during upwelling than during nonupwelling. No statistically significant relationships were found between skeletal Cd/Ca ratios and maximum linear skeletal extension, δ13C or δ18O, suggesting that at seasonal resolution the Cd/Ca signal was decoupled from growth rate, coral metabolism, and ocean temperature and salinity, respectively. These results led to the following conclusions, (1) coral skeletal Cd/Ca ratios are independent of skeletal extension, coral metabolism and ambient temperature/salinity, (2) shallow P. gigantea is the most reliable species for paleoupwelling reconstruction and (3) the average Cd/Ca record of several colonies, rather than of a single coral, is needed to reliably reconstruct paleoupwelling events.  相似文献   

3.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   

4.
通过对南海北部大亚湾海区1976~1998年扁脑珊瑚Platygyra骨骼Cu,Pb和Cd含量的研究及其与观测记录的比较,初步认为珊瑚可以记录大亚湾海区重金属的年际变化特征;发现1979年和1991年是重金属含量比较高的年份;由扁脑珊瑚记录推测珊瑚中Cd含量短时间内可能受到了核电站兴建的影响,但近20多年来的大亚湾扁脑珊瑚及海水中重金属状况的总体变化过程可能与整个广东海域水质的变化背景基本一致,而与核电站的兴建和运行似乎没有明显的关系  相似文献   

5.
Sediments from San Antonio Bay, the northwest Gulf of Mexico, and the Mississippi River Delta were acid leached and analyzed for Fe, Mn, Pb, Zn, Cd, Cu and Ni by atomic absorption spectrophotometry. In order to account for differences in sediment clay, carbonate, and organic matter content, metal concentrations were normalized to Fe. Significant linear correlations of metals to Fe were obtained for unpolluted sediments and deviations from these “natural” statistical populations were found for areas thought to have metal input caused by man. San Antonio Bay sediments show little evidence of metal pollution despite 70 years of shell dredging in the bay. However, the San Antonio-Guadalupe River system, the bay's prime sediment source, has 10% to 50% higher than natural levels of Pb, Cd and Cu. Sediments from a 1500 km2 area of the Mississippi River Delta have Pb and Cd concentrations 10% to 100% higher than expected levels. The vertical distribution of Pb and Cd in these sediments suggests that inputs have occurred during the past 30 to 40 years. We find no indication of metal pollution in other areas of the Delta or along the continental shelf of the northwest Gulf of Mexico.  相似文献   

6.
The Gulf of Mannar along the Tuticorin coast is a coral base of the southeast coast of India. To obtain a preliminary view of its environmental conditions, geochemical distribution of major elements (Si, Al, Fe, Ca, Mg, Na, K, P), trace elements (Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) and acid leachable elements (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were analyzed in surface sediment samples from two seasons. Geochemical fractionation confirmed the lithogenic origin of metals, which were mainly associated with the detrital phase. The sediments in the gulf are sandy with abundant calcareous debris, which controls the distribution of total and acid leachable elements. Enrichment factors relative to crust vary by a magnitude of two to three and the presence of trace metals indicates the input of Cr, Pb, Cd, Cu and Zn in both forms through industrial activities. Factor analysis supports the above observation with higher loadings on acid leachable elements and its association with CaCO3. The increase in concentration of trace metals (Cr, Pb, Cd, Cu, Co, Ni, Zn) along the Gulf of Mannar indicates that the area has been contaminated by the input from riverine sources and the industries nearby. The present study indicates that other sources should be evaluated in the long-term monitoring program.  相似文献   

7.
Ability of corals to accumulate heavy metals,Northern Red Sea,Egypt   总被引:1,自引:1,他引:0  
The concentrations of six heavy metals (Fe, Mn, Ni, Cu, Pb and Zn) were studied in 11 hard and 4 soft common coral species collected from Hurghada, Wadi Al-Gemal and Gola’an along the Red Sea coast to assess the differential abilities of corals to concentrate and assimilate the heavy metals inside soft coral tissues and hard coral skeletons. These results reveal the order of Fe > Zn > Ni > Pb ≥ Mn > Cu. Fe recorded significant high concentrations in mushroom (funnel) forms of the soft corals at the different sites; 125.19, 101.71 and 90.44 ppm at Gola’an, Hurghada and Wadi Al-Gemal, respectively. The soft coral species recorded the highest average concentration of Mn, Ni, Cu and Zn than the hard corals, which were 13.22, 16.05, 13.08 and 148.17 ppm, respectively. Generally, soft corals show higher metal concentrations than the hard ones; moreover, Hurghada recorded a higher trend of metal concentrations in soft and hard corals than the other sites. The study concluded that many biological and local environmental factors influenced the metal occurrences and uptakes in both coral forms such as, the exposed surface area for metal uptake, turbidity, overlying mucus thickness and the ability of metals to substitute inside the crystal lattice of the hard corals.  相似文献   

8.
Multivariate statistical approach is used to identify the sources of heavy metals (Bi, Cd, Co, Cr, Mn, Pb, U, V, and Zn) in surface water and freshly deposited riverine sediment samples in Yangzhong city, China. The metal concentration data for the water and sediment samples are reported in terms of basic statistical parameters and metal-to-metal correlations. In both surface water and sediment samples, significant correlations are observed between some metals. Principal component analysis and cluster analysis distinguishes factors of lithogenic and anthropogenic origin. Bismuth, Cd, Co, and Pb (Co only for water samples) contents are controlled by the regional lithogenic high background factor; Co, Mn, U, and V (Co only for sediment samples) are interpreted to be mainly inherited from soil parent materials, while Cr, Zn, and Mn in the two kinds of samples are recognized as the tracer of industrial pollution. Obvious similarity between factor loadings of the two kinds of samples is observed, evidencing that metal variability in the two kinds of samples is controlled by the same sources. Statistical analysis agrees with discussion based on background value and field survey of point-source pollutant affected sediment, making this statistical discussion more convincing.  相似文献   

9.
The geochemistry of coral skeletons may reflect seawater conditions at the time of deposition and the analysis of fossil skeletons offers a method to reconstruct past climate. However the precipitation of cements in the primary coral skeleton during diagenesis may significantly affect bulk skeletal geochemistry. We used secondary ion mass spectrometry (SIMS) to measure Sr, Mg, B, U and Ba concentrations in primary coral aragonite and aragonite and calcite cements in fossil Porites corals from submerged reefs around the Hawaiian Islands. Cement and primary coral geochemistry were significantly different in all corals. We estimate the effects of cement inclusion on climate estimates from drilled coral samples, which combine cements and primary coral aragonite. Secondary 1% calcite or ∼2% aragonite cement contamination significantly affects Sr/Ca SST estimates by +1 °C and −0.4 to −0.9 °C, respectively. Cement inclusion also significantly affects Mg/Ca, B/Ca and U/Ca SST estimates in some corals. X-ray diffraction (XRD) will not detect secondary aragonite cements and significant calcite contamination may be below the limit of detection (∼1%) of the technique. Thorough petrographic examination of fossils is therefore essential to confirm that they are pristine before bulk drilled samples are analysed. To confirm that the geochemistry of the original coral structures is not affected by the precipitation of cements in adjacent pore spaces we analysed the primary coral aragonite in cemented and uncemented areas of the skeleton. Sr/Ca, B/Ca and U/Ca of primary coral aragonite is not affected by the presence of cements in adjacent interskeletal pore spaces i.e. the coral structures maintain their original composition and selective SIMS analysis of these structures offers a route to the reconstruction of accurate SSTs from altered coral skeletons. However, Mg/Ca and Ba/Ca of primary coral aragonite are significantly higher in parts of skeletons infilled with high Mg calcite cement. We hypothesise this reflects cement infilling of intraskeletal pore spaces in the primary coral structure.  相似文献   

10.
To assess heavy metals in mangrove swamps of Sehat and Tarut coastal areas along the Arabian Gulf, 18 sediment samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis. The results indicated that the distribution of some metals was largely controlled by anthropogenic inputs, while others were of terrigenous origin and most strongly associated with distribution of aluminum and total organic carbon in sediments. Mangrove sediments were extremely severe enriched with Sr (EF?=?67.59) and very severe enriched with V, Hg, Cd, Cu, As (EF?=?44.28, 37.45, 35.77, 25.97, and 11.53, respectively). Average values of Sr, V, Hg, Cd, Cu, Ni, As, and Cr were mostly higher than the ones recorded from the Mediterranean Sea, the Red Sea, the Gulf of Aqaba, the Caspian Sea, the Arabian and Oman gulfs, coast of Tanzania, sediment quality guidelines, and the background shale and the earth crust. Landfilling due to coastal infrastructure development around mangrove forests, oil spills and petrochemical and desalination effluents from Al-Jubail industrial city to the north were the anthropogenic activities that further enhanced heavy metals in the studied mangrove sediments.  相似文献   

11.
To investigate the sources and toxicity of metals in Bohai Sea sediments, concentration and geochemical speciation of metals of surface sediments were measured. Metal distributions and principal component analysis suggested that Zn, Pb, Cd, and Ag were largely derived from anthropogenic sources, whereas the majority of the other metals studied here were found to have been derived from natural rock weathering and calcareous marine biota. The major sources of anthropogenic metal inputs to the study region are from the mining industry, port transport services, vehicle exhausts, and agricultural runoff. Empirical sediment quality guidelines and the risk assessment code were used to evaluate the metal toxicities in this area. Our results show that Cd presents a high risk to the ecological system because it was found in the non-residual phase, which tends to be weakly bound and highly bioavailable; Cu, Pb, Ni, and Co pose a low risk; Zn and Cr present no risk. The use of the threshold effects level and effects range-low values of Cd and Cr as guidelines for the Bohai Sea are of limited use as they do not account for the bioavailability and toxicity of the elements in marine environments. Assessment of the annual metal fluxes from riverine and atmospheric sources indicates that the largest contributions of metals to the Bohai Sea were derived from the suspended particulate load of rivers. Furthermore, it was found that the main depositional zones for metals in the Bohai Sea were in estuaries and the center mud zones.  相似文献   

12.
1 IntroductionCorals are an important proxy for reconstructingpaleo-environment and revealing global changes in thepast. Variations of heavy metals in the growth bands ofcorals can provide important information about the oce-anic environment.Bastidas and …  相似文献   

13.
Integrated analyses of grain size, 210Pb stable isotope, and heavy metals were performed to characterize the sedimentary core LDC30 collected from the southeastern Liaodong Bay of China and investigate the 100-year history of heavy metal accumulation. The aluminum-normalized enrichment factors and the excess metal fluxes (MFxs) indicated that the metal accumulation in the southeastern Liaodong Bay occurred in three stages: a pre-industrial stage (prior to 1960s) with natural accumulation, an initial industrial stage (1960–1990) with slowly elevated accumulation, and an industrialized stage (post-1990s) with accelerated accumulation. A moderate enrichment of Cd and Pb (up to 4.1- and 2.6-fold over the baseline, respectively) and a slight enrichment of Cr, Cu, Ni, and Zn (up to 1.3-fold) were measured in the recent sediments. Multivariate analysis demonstrated that the Cr, Cu, Ni, and Zn were from the natural origin, whereas Cd and Pb from the anthropogenic origin. The MFxs of Cd and Pb showed a drastically increasing trend since 1990s, which could result from the intensive application of fertilizers and combustion of fossil fuels.  相似文献   

14.
This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where instrumental temperature records are available, a Rayleigh-based framework allows the effects of stress on coral calcification to be identified on the basis of anomalies in the skeletal composition.  相似文献   

15.
A record of the concentrations of Pb and Ba and the isotopic composition of Pb has been established for a remote, low accumulation site in the Atlantic sector of Antarctica (Coats Land) by means of thermal ionization mass spectrometry. The snow samples cover the period ∼1840 to 1990. They were taken from the walls of a pit to a depth of 7.8 m and as a core to 16 m; ultraclean procedures were used. Detailed laboratory subsampling provided both long-term (secular scale) and short-term (intra-annual) Pb, Ba, and Pb isotope variations. The results show that there have been significant variations in Pb concentrations (range, 0.1 to 9.3 pg/g) and isotopic composition (range, 1.096 to 1.208 for 206Pb/207Pb ratio) since the 1840s. The data show evidence of pollution for this metal in Antarctica as early as the 1880s. Several Pb maxima were observed: the first at the beginning of the 20th century and the last in the 1970s to 1980s, with a clear decrease during recent years. Although the last maximum is clearly linked to the rise and fall in the use of leaded gasoline in the Southern Hemisphere, especially in South America, the reason for the first remains uncertain. The pattern of changing isotopic composition of Pb reveals the changing origin and character of the anthropogenic inputs to Antarctica. An interesting feature in this pattern is the relatively large contribution of unradiogenic Pb in the ∼1890s, possibly originating from Australia. Another interesting feature is the pronounced intra-annual variation in the isotopic composition of Pb, which illustrates the complexity of the changing inputs of Pb to Antarctica.  相似文献   

16.
星罗棋布的热带珊瑚作为海洋环境的信息载体,具有分辨率高、时间跨度大、记录连续完整、体系封闭性好、蕴涵的信息丰富、可选择的代用指标多、测定简便和易于定年等特点。珊瑚有效地记录了全球环境变化的诸多信息,已成为研究过去(如末次间冰期以来)和近代(如数十至数百年以来)的气候—环境变率和可预测性(PAGES CLIVAR)领域重要的环境载体。以全球变化为背景,对近年来珊瑚环境代用指标的研究成果进行评述。重点讨论了珊瑚氧同位素和微量元素比值等指标在海表温度(SST)变化、海气交换程度、季风强弱、厄尔尼诺—南方涛动(ENSO)发生的频率和强度,以及它们之间的相互作用等全球变化的核心问题上的研究进展,并展望了南海珊瑚在高分辨率全球变化研究中的地位与方向。  相似文献   

17.
Acid extractable Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb. and Zn were determined in sediments from the Inner Virginia Shelf, and from shipping channels in the lower Chesapeake Bay and Hampton Roads, Virginia, harbor system. Data were evaluated by a variety of techniques Levels of Cd, Cu, Pb, and Zn exceeded average crustal abundances for most of the study sites. Cumulative frequency curves suggested that there were two major populations for all metals and perhaps a third and smaller, one for Cd, Cr, and Mn Plots of metal vs Fe indicated no anthropogenic inputs of metals for shelf and Chesapeake Bay channel sites, but suggested anthropogenic influences for all metals in several of the inshore sites. Enrichment factor calculations showed enrichment of Cd, Pb, and Zn with respect to average crustal abundances for all sites and of Cu for the industrial harbor system. A recommendation of this study for evaluation of environmental geochemical metals data is to utilize mean concentrations, cumulative frequency plots, and metal vs Fe and/or enrichment factor calculations when evaluating the pollution status of sediments.  相似文献   

18.
近50年来抚仙湖重金属污染的沉积记录*   总被引:15,自引:8,他引:15  
文章以抚仙湖污染严重的北部和基本未受人类活动影响的中部为研究对象,分别采集了沉积岩芯FB和FZ,通过对岩芯的137 Cs测年和重金属元素(Cu,Ni,Ti,Cr,V,Pb,Cd和Zn)的含量分析,研究了湖泊重金属来源和污染历史,并利用地质累积指数法评价了湖泊重金属污染程度。结果表明:抚仙湖北部的平均沉积速率约为2.0~2.8mm/a;20世纪80年代以前,湖泊北部和中部的重金属元素(Cu,Ni,Ti,V,Pb,Cd,Zn)以自然来源为主;80年代以后,抚仙湖受到人类活动的影响,但湖泊中部Cu,Ni,Ti,V,Pb,Zn以及湖泊北部Cu,Ni,Ti,V仍以自然来源为主;湖泊北部Pb和Zn地质累积指数值小于1,属无污染到中度污染;北部Cd地质累积指数为3~4,达强度污染;中部Cd地质累积指数为2~3,属中强度污染;且Pb,Zn和Cd污染程度有加速增大的趋势。  相似文献   

19.
We investigated the effects of diagenetic alteration (dissolution, secondary aragonite precipitation and pore filling) on the distribution of U in live and Holocene coral skeletons. For this, we drilled into large Porites lutea coral-heads growing in the Nature Reserve Reef (NRR), northern Gulf of Aqaba, a site close to the Marine Biology Laboratory, Elat, Israel, and sampled the core material and porewater from the drill-hole. In addition, we sampled Holocene corals and beachrock aragonite cements from a pit opened in a reef buried under the laboratory grounds. We measured the concentration and isotopic composition of U in the coral skeletal aragonite, aragonite cements, coral porewater and open NRR and Gulf of Aqaba waters.Uranium concentration in secondary aragonite filling the skeletal pores is significantly higher than in primary biogenic aragonite (17.3 ± 0.6 compared to 11.9 ± 0.3 nmol · g−1, respectively). This concentration difference reflects the closed system incorporation of uranyl tri-carbonate into biogenic aragonite with a U/Ca bulk distribution coefficient (KD) of unity, versus the open system incorporation into secondary aragonite with KD of 2.4. The implication of this result is that continuous precipitation of secondary aragonite over ∼1000 yr of reef submergence would reduce the coral porosity by 5% and can produce an apparent lowering of the calculated U/Ca - SST by ∼1°C and apparent age rejuvenation effect of 7%, with no measurable effect on the calculated initial U isotopic composition.All modern and some Holocene corals (with and without aragonite cement) from Elat yielded uniform δ234U = 144 ± 5, similar to the Gulf of Aqaba and modern ocean values. Elevated δ234U values of ∼180 were measured only in mid-Holocene corals (∼5000 yr) from the buried reef. The values can reflect the interaction of the coral skeleton with 234U-enriched ground-seawater that washes the adjacent granitic basement rocks.We conclude that pore filling by secondary aragonite during reef submergence can produce small but measurable effects on the U/Ca thermometry and the U-Th ages. This emphasizes the critical importance of using pristine corals where the original mineralogy and porosity are preserved in paleooceanographic tracing and dating.  相似文献   

20.
The concentration of trace metals like Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were studied in beach and estuarine sediments of the Velanganni Coast, South East coast of India to understand metal pollution due to urbanization/industrialization. This area was affected by the urbanization activity like untreated effluent discharge, transportation and incineration of solid waste, etc. In this context, quality of the sediments was evaluated based on the enrichment factor, geo-accumulation index (Igeo), pollution load index, and sediment quality guidelines. Furthermore, correlation matrix and principal compound analyses have been performed with SPSS 7.5 statistical software. The result illustrated that the metal enrichment is in the following order: Cd > Cr > Ni > Zn > Pb > Mn > Cu. The level of Igeo suggests that Cd has moderately polluted the sediment class. Similarly, principal component analysis showed that Cd and Pb accounted for the anthropogenic pollution, but Pb inferred as its tracers level. The results strongly indicate anthropogenic sources for moderate input of Cd contamination in to Velanganni coastal sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号