首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
以6-甲氧基-8-氨基喹啉为原料,经重氮化后与间苯二酚偶联,合成了有机试剂4-(6-甲氧基-8-喹啉偶氮)-间苯二酚(简称MQAR),用DMF重结晶精制。通过TLC,EA,UV-VIS,IR,^1HNMR等分析手段,对合成产物进行分析和结构鉴定,确证得到了MQAR纯品,产品熔点为194℃。  相似文献   

2.
1 雨情、灾情及造成的影响   2 0 0 2 - 0 6- 0 8- 1 0陕西出现了一次全省范围的强降雨过程 ,其强降水范围之大 ,暴雨、大暴雨站数之多 ,为历史同期所罕见。汉中、安康、商洛、西安、宝鸡的部分县乡发生了严重的暴雨洪水灾害。这次大降雨过程从 6月 8日上午开始 ,到 6月 1 0日上午结束。全省 97个站都降了大雨 ,其中 44站暴雨。 8日 0 8时到 1 0日 0 8时的过程累计降雨量 (如图 1 ) ,在 5 0~ 1 0 0 mm的 40站 ,1 0 0~ 2 0 0 mm的 3站 ,2 0 0 mm以上的 1站。降雨最为集中的时段在 8日 0 8时— 9日 0 8时 ,全省共有 30站暴雨 ,其中大暴雨…  相似文献   

3.
资料通讯     
第 5卷第 4期 (总第 17期 ) 2 0 0 0年 9月NCEP/ NCAR逐 6小时再分析资料简介继美国环境预报中心 ( NCEP)和国家大气研究中心 ( NCAR)联合推出月平均再分析资料( 1 949- 0 1 )和日平均再分析资料 ( 1 95 8- 0 1 - 0 1 )后 ,最近又正式对外发布逐 6 h再分析资料集( 1 95 8- 0 1 - 0 1 T0 0 ) ,这为研究天气尺度和中尺度系统变化过程提供了良好的条件 ,并能为中尺度数值模式及区域气候模式提供初始场和侧边界条件。该资料以 net CDF( network Common Data Form)的形式存储 ,通常可用 COLA发展的自由软件 Gr ADS或 PMEL发展的可…  相似文献   

4.
华北-华东地区高温热浪与土壤湿度的关系研究   总被引:2,自引:1,他引:1  
王丽伟  张杰 《气象科学》2015,35(5):558-564
利用观测站点的日最高气温、土壤湿度旬观测资料以及土壤湿度再分析资料等,分析了华北-华东地区高温热浪次数的时空变化特征及其与土壤湿度的关系。结果表明:1960s以及1990-2010年为高温热浪次数的高值期,1970s-1980s为低值期。利用旋转经验正交函数分解得到土壤湿度的3个气候分区,分区内前期(3-5月)和同期(6-7月)的土壤湿度与6、7月份高温热浪次数基本呈负相关关系,并且同期相关性更显著。在华北-华东北部与中部,5月下旬土壤湿度与6月高温热浪次数、6月上、中旬平均土壤湿度与6月高温热浪次数、7月平均土壤湿度与7月高温热浪次数的相关性均显著。  相似文献   

5.
研究论文·技术报告天气分析与预报秦巴山区降水量分布综合模式袁应泽 (1 :1 -4)* 陕西 2 0 0 2 -0 6-0 8区域性暴雨天气过程分析吴宇华等 (1 :4-7)*  陕西省高等级公路大雾的预报方法研究贺皓等 (1 :7-1 0 )青藏高原东侧一次区域性暴雨天气过程分析王 川 (1 :1 1 -1 3 )*  2 0 0 2年陕西冰雹特点及雷达回波特征刘勇等 (1 :1 4-1 6)汉中市 6— 9月主汛期暴雨预报方法张小峰等 (1 :1 7-1 8)黄河中游泾渭洛河近 5 0年降水分布特征及其变化特点分析彭梅香等 (1 :1 9-2 3 )一次影响航空的强沙尘暴天气分析张静芳等 (1 :2 3 -2 5 )陕南 2 0 0…  相似文献   

6.
研究论文·技术报告天气分析与预报2 0 0 2 - 0 7- 0 4子长特大暴雨中尺度分析雷崇典等 ( 1 :4- 8)秦岭山地暴雨与地形关系分析研究殷志有等 ( 1 :8- 1 0 )环流季节变化及其异常的诊断分析蔡新玲等 ( 1 :1 4- 1 7)基于 MICAPS平台的四维天气诊断分析系统赵榆飞等 ( 2 :1 - 3)宁夏 2次典型寒潮天气的对比分析陈豫英 ( 2 :4- 6)汉中市汛期降水分级分县 T2 1 3释用方法张小峰等 ( 2 :1 2 - 1 4)基于 T2 1 3数值产品的安康降水分县预报释用党红梅等 ( 2 :1 5 - 1 6)安康一次连续性暴雨过程分析王 洁等 ( 2 :1 7- 1 9)陕西 2 0 0 3年盛夏连…  相似文献   

7.
春季的霜冻事件是北半球温带地区与农业相关的最严重的极端事件之一。在气候变化背景下,探究整个中国地区春霜冻的变化趋势和未来可能变化有利于增进人们对春霜冻的认识,对我国未来农业结构调整有一定的参考价值。本文采用不易受离群值影响且考虑了自相关的非参数方法,在分析1960~2020年观测资料的基础上,利用24个耦合模式比较计划第6阶段(Coupled Model Intercomparison Project Phase 6,CMIP6)模式模拟的中等辐射强迫(SSP2-4.5)情景下的逐日最低温数据,在评估模式模拟性能后对中国地区未来(2021~2100年)的春霜冻日数、终霜日的变化趋势的空间分布特征以及与1991~2020年气候态相比的全国平均的距平序列进行了分析。结果表明:1)1960~2020年,全国约60.3%站点的春霜冻日数呈现显著减少趋势[-3.5~0 d(10 a)^(-1)],40%站点的终霜日呈显著提前趋势[-4.3~0 d(10 a)^(-1)];全国平均的春霜冻日数呈^(-1).3 d(10 a)^(-1)的显著减少趋势,终霜日则呈^(-1).7 d(10 a)^(-1)的显著提前趋势。2)2021~2100年,预估我国大部分地区的春霜冻日数均呈现显著减少趋势[^(-1).6~0 d(10 a)^(-1)],终霜日则呈显著提前趋势[^(-1).4~0 d(10 a)^(-1)];全国平均的春霜冻日数呈现-0.8 d(10 a)^(-1)的显著减少趋势,终霜日呈现-0.8 d(10 a)^(-1)的显著提前趋势。  相似文献   

8.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

9.
1948-2001年全球陆地6-8月降水长期变化的时空特征   总被引:9,自引:4,他引:9  
采用PREC/L的全球陆地月降水资料,研究了1948-2001年全球陆地6-8月降水长期变化的时空特征.结果表明,在该时段内,6-8月降水量较大的区域是全球几个主要的季风区,而且季风区的降水均方差较大;全球陆地6-8月降水量以负趋势为主要特征,降水量明显减少的区域是热带非洲,中国的淮河以北,俄罗斯的东部,中、西西伯利亚,朝鲜,南亚等8个区域;降水量增加的区域是加拿大北部、格陵兰中部等4个区域;全球36个纬度带中共有12个纬度带6-8月降水量趋势变化达到了0.05显著性水平的Monte Carlo检验,但是只有1个纬度带(65~60°S)是正趋势.全球陆地6-8月降水量正趋势的范围是很小的.初步探讨了ENSO与全球陆地6-8月降水量趋势变化的关系.  相似文献   

10.
卞韬  任国玉  刘思廷  赵煊  范欣 《气象科技》2024,52(1):116-123
利用石家庄17个国家气象站1972—2021年逐日地面气温、0 cm地温资料,分析了石家庄地-气温差的变化特征,结果表明:(1)石家庄地-气温差从1月开始逐渐增加,5月达到最大值5.0℃,然后开始减小,12月达到最小值-0.8℃;地-气温差在11月到次年1月为负值;春、夏、秋季均为正值,夏季最大,春季大于秋季,冬季以负值为主;(2)石家庄多年平均地-气温差在1.6~2.6℃之间,平均为2.1℃;整体上东部大于西部。(3)近50年石家庄年平均地-气温差呈显著的减小趋势,变化速率为-0.14℃/10a;夏、秋、冬三季的减小趋势均非常显著,夏季的减小趋势最强;石家庄市区和近郊站点年和四季地-气温差的减少趋势更显著。本文结论对科学认识石家庄城市生态环境的变化具有参考意义。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号