首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
辽东地区是我国重要的黄金产区,实现深部找矿新突破已成为该区的重点研究任务.地球物理方法是发现和探测深部金矿的主要技术手段.为了精细刻画青城子矿集区地层结构,准确揭示深部矿化蚀变带物探异常特征,建立深部找矿物探解释标尺,在小佟家堡子金矿区ZK12-11孔开展了多参数地球物理测井和井中物探测量工作,结合钻孔岩心编录,利用直方图、交会图等技术分析了该孔300~990 m井段岩性和矿化蚀变带的响应特征,划分了钻孔岩性剖面和矿化蚀变层位.结果表明:自然伽马、电阻率、磁化率和极化率4种参数能够区分钻孔主要岩性,可以作为重建钻孔岩性剖面的主要依据;黄铁矿化层位黄铁矿含量不高,不足以引起地层电阻率的明显降低,石墨化是引起电阻率降低的主要因素;自然伽马高低过渡带与低阻高极化无磁异常带是小佟家堡子金矿区地球物理测井找金的找矿标志.地球物理测井能够有效圈定找金有利层位,更加精确地指导金矿深部找矿工作,应受到广泛重视.  相似文献   

2.
笔者利用激电测量和EH4电磁测深两种方法,对河北省丰宁县二道沟银多金属矿区进行了测量,并对该矿区岩石-矿石物性特征、激电异常特征和EH4连续电导率剖面特征等与矿化蚀变带之间的联系进行了探索。结果显示:1)黄铁矿方铅矿化蚀变岩总体表现为相对低阻高极化特性,采用EH4电磁测深和激电法寻找本区隐伏矿体条件良好;2)矿区的激电异常特征与矿(化)体特征吻合较好,激电异常带与矿化带相互对应,与岩石地球化学组合异常相对应,通过激电测深反演,分析极化率、电阻率异常特征,可推测深部隐伏蚀变矿化带;3)本区断裂构造控矿特征明显,利用EH4连续电导率剖面测量较好的反映了本区深部构造特征,特别是断裂构造特征,指示出找矿的有利部位。这表明利用激电测量和EH4电磁测量对该类型矿床的找矿具有良好指导作用。  相似文献   

3.
陕西洛南寺耳金矿成矿规律与成矿预测   总被引:1,自引:0,他引:1  
方贵聪 《地质与勘探》2011,47(6):1091-1098
陕西寺耳金矿成矿地质背景在小秦岭地区具有代表性,为了揭示其成矿规律和深部成矿潜力,为本区及小秦岭其它地区找矿提供借鉴,文章在分析寺耳金矿成矿地质背景和矿床地质特征的基础上,研究其成矿特点,发现矿区内矿化带、矿脉(体)多呈等距性分布,硅化、黄铁矿化、钾化与金矿化关系密切,烟灰色石英、钾长石和黄铁矿组合对金矿化具有明显的指...  相似文献   

4.
用化探方法在黑龙江砂宝斯金矿区找矿的效果   总被引:3,自引:0,他引:3  
通过1:5万水系沉积物测量工作,圈定金异常。结合1:2.5万和1:1万土壤测量工作追索金异常源;根据岩石地球化学工作分析成果,查明砂宝斯金矿区Au、As、Sb、Tl、Sn、Cu地球化学特征有其分布和分配规律;运用元素相关性分析确定Au与As、Sb密切相关;利用As、Sb岩石异常可指导矿区深部找矿工作。通过探矿工程揭露,在砂岩、大理岩中发现2条矿化带,圈定4条金矿体和5条金矿化体。  相似文献   

5.
激发极化法在金星金矿勘查的应用效果   总被引:1,自引:0,他引:1  
金星金矿受北西西向金矿化破碎蚀变带控制,在该区采用中梯装置的时间域激发极化法,激电测深等方法,进行了金矿勘查,并取得了该区深部金矿不同空间的地质成矿信息。电法激电异常对深部找矿具有指导意义,通过钻探工程验证并取得了良好的地质效果,低阻、高极化是该区深部找矿的有效标志。  相似文献   

6.
姚树春 《世界地质》2019,(2):354-361
矿石的共生组合以及近矿围岩蚀变特征表明纱岭金矿I-2号矿脉矿化类型为蚀变岩型金矿,矿床成因类型属混合岩化-重熔岩浆热液型金矿床。焦家成矿断裂带中、深部存在第二矿化富集段。主要找矿标志有北东向压扭性断裂带、黄铁绢英岩化蚀变岩带、低磁场的线状串珠状异常带等指示标志以及特有的指示元素的组合异常;矿化富集规律为构造控矿及岩性控矿。金矿化的强弱依附于主要矿化阶段的发育及迭加程度,即当含有细粒黄铁矿细脉和多金属硫化物石英细脉或其相互迭加时往往形成厚而富的工业矿体,其在空间分布上,服从于矿体南西侧伏规律。  相似文献   

7.
李凯  万欢 《物探与化探》2019,(3):494-501
乐平涌山地区隶属于钦杭成矿带东段塔前—赋春铜多金属成矿带。在该地区开展1∶1万土壤地球化学测量工作,分析元素地球化学特征、单元素异常特征、元素组合特征及结合成矿地质背景,共圈定18处综合异常,通过对综合异常进行分类评价及评序,优选出较好的3处异常开展异常详细查证工作。经地表探槽揭露,新发现金矿(化)点2处,揭露金矿体2条,金矿化体2条,取得较好的找矿效果,认为该区找矿前景良好,是寻找矽卡岩型铜矿、韧性剪切型金矿的有利地区。  相似文献   

8.
云南镇康县小干沟金矿为石英脉型金矿,金矿体主要产于上三叠统牛喝塘组玄武岩之构造破碎带中。该矿床的成矿条件和地球化学特征表明,小干沟金矿的矿化元素具有明显的分带性,地表浅部以金为主,中深部出现钨、铜、铅锌等多金属矿化,显示了该矿具有较好的找矿前景。  相似文献   

9.
陕西山阳县香沟—夏家店金成矿带,是南秦岭地区重要的金多金属成矿带,产出有王家坪金矿、龙头沟金矿、香沟金-钨矿、夏家店金矿等矿床;在金矿的勘查和研究中均发现Ba元素异常或重晶石化是重要的找矿标志之一。本文通过矿床地质资料对比分析,结合龙头沟金矿、香沟金矿和桐树沟金矿重晶石的电子探针测试研究,发现重晶石中具有一定的金、银矿化特征,尤其是桐树沟金矿区内重晶石中显示一定的金异常(w(Au)=0.03%),同时具有Sb、Cu、Mo、Bi元素异常,与矿区金异常化探元素组合特征一致,有同期矿化的特点。重晶石化或Ba元素化探异常与金化探异常叠加部位均已发现金矿体(金矿床)。结合研究区区域磁异常带是构造岩浆活动带的认识,认为重晶石是深部成矿热液反复活动的指征;在山阳县桐树沟金矿—磨房沟金矿一带和商南县青石沟、过凤楼地区还具有发现金矿床的潜力。  相似文献   

10.
黑龙江省呼玛县西部兴隆-基座山地区为瓦拉里-兴隆金矿带中重要的金矿化集中区。区内水系沉积物测量主要组合异常区地质特征与呼玛矿集区已知浅成低温热液金矿床地质特征具有可比性,在岩性条件、构造环境、矿化蚀变等方面和矿集区矿床地质特征相一致。区内水系沉积物及土壤测量均发现存在Au、Ag、As、Sb、Bi、Cu组合异常,异常分带清晰,具有明显的浓集中心。水系沉积物主要异常元素组合与矿集区已知浅成低温热液金(银)矿床周围异常元素组合相一致,金异常及其伴生元素异常均受次级断裂构造、岩体与地层接触带及破碎带控制。依照类比结果,区内划分了3个异常远景区,对部分远景区进行工程揭露,发现蚀变矿化带金含量明显增高,局部可见金矿化体,表明区内寻找浅成低温热液型金矿床具有广阔前景。  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

15.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

16.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

17.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

18.
19.
20.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号