首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
总结浮式风力机类型及其对应的特征动力学问题,针对浮式风力机气动荷载、水动荷载的计算方法以及结构动力学、控制动力学典型问题进行论述。讨论了气动—水动—结构—伺服耦合分析的难点,重点分析了二阶波浪力、畸形波等非线性波浪荷载、流荷载及涡激运动对浮式风力机特征动力响应的影响。阐述了浮式风力机动力学研究的试验方法、数值仿真方法、样机测试方法,并对模型试验技术的相似理论、气动模型的实现和难点以及数值仿真的频域方法、时域方法和分析工具进行了归纳对比。研究表明:浮式风力机多场、多体耦合动力分析机理及相关技术仍不成熟,气动荷载、高阶非线性波浪荷载耦合模型的建立是动力学问题研究的重点,数值仿真及模型试验是浮式风力机动力响应研究的主要方法,样机测试技术的积累将促进设计标准的完善及浮式风电的产业化发展。  相似文献   

2.
In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.  相似文献   

3.
概念性地设计了一种新型半潜—Spar混合浮式基础,以5 MW水平轴风机为例,研究了该新型浮式基础支撑的浮式风力机系统的动力响应。基于三维势流理论和Morison公式,应用SESAM软件建立浮式基础模型,在频域内计算了该浮式基础的水动力参数和响应算子,分析了浮式基础的运动性能。考虑叶片气动载荷和浮式基础波浪载荷,应用FAST软件对风机—浮式基础系统进行时域计算,分析风力机系统的运动性能。结果显示,该浮式基础运动幅值较小,具有良好的运动性能。  相似文献   

4.
波浪能是一种清洁、可再生的新型能源,波浪能发电装置在海上作业时会受到变化的风、浪、流载荷作用,需要系泊系统保证其稳性和安全性。以适用于中国南海500 m水深的振荡双浮体式波浪能发电装置为研究对象,运用频域计算与时域计算结合的方法对双浮体及其系泊系统的运动响应和动力载荷进行计算,获取极端海况与工作海况下浮体运动和系泊缆索张力的时历数据。参照BV船级社NR-493规定的海上浮式结构物系泊安全系数规范,对3种系泊方案进行安全校核和对比分析。选定其中一种系泊方案,通过改变系泊系统以及能量转换器(PTO)的参数,探究参数变化对双体波浪能装置运动响应以及系泊系统特性的影响,为类似应用于深水的双体波浪能装置系泊系统的设计提供参考。  相似文献   

5.
This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine (WindStar TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the WindStar TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the WindStar TLP system were performed. Statistics of selected response variables in specified design load cases (DLCs) were obtained and analyzed. It is found that the proposed WindStar TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the WindStar TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed WindStar TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the WindStar TLP system.  相似文献   

6.
Offshore wind turbines can exhibit dynamic resonant behavior due to sea states with wave excitation frequencies coinciding with the structural eigenfrequencies. In addition to significant contributions to fatigue actions, dynamic load amplification can govern extreme wind turbine responses. However, current design requirements lack specifications for assessment of resonant loads, particularly during parked or idling conditions where aerodynamic damping contributions are significantly reduced. This study demonstrates a probabilistic approach for assessment of offshore wind turbines under extreme resonant responses during parked situations. Based on in-situ metocean observations on the North Sea, the environmental contour method is used to establish relevant design conditions. A case study on a feasible large monopile design showed that resonant loads can govern the design loads. The presented framework can be applied to assess the reliability of wave-sensitive offshore wind turbine structures for a given site-specific metocean conditions and support structure design.  相似文献   

7.
Xie  Shuang-yi  Zhang  Kai-fei  He  Jiao  Gao  Jian  Zhang  Cheng-lin 《中国海洋工程》2022,36(3):372-383

The asymmetric or periodically varying blade loads resulted by wind shear become more significant as the blade length is increased to capture more wind power. Additionally, compared with the onshore wind turbines, their offshore counterparts are subjected to additional wave loadings in addition to wind loadings within their lifetime. Therefore, vibration control and fatigue load mitigation are crucial for safe operation of large-scale offshore wind turbines. In view of this, a multi-body model of an offshore bottom-fixed wind turbine including a detailed drivetrain is established in this paper. Then, an individual pitch controller (IPC) is designed using disturbance accommodating control. State feedback is used to add damping in flexible modes of concern, and a state estimator is designed to predict unmeasured signals. Continued, a coupled aero-hydro-servo-elastic model is constructed. Based on this coupled model, the load reduction effect of IPC and the dynamic responses of the drivetrain are investigated. The results showed that the designed IPC can effectively reduce the structural loads of the wind turbine while stabilizing the turbine power output. Moreover, it is found that the drivetrain dynamic responses are improved under IPC.

  相似文献   

8.
This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine (OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.  相似文献   

9.
浮筒辅助大型导管架结构整体拆除作业是一个连续过程,作业过程中拆除系统的动力荷载及动力参数均会发生显著变化,传统基于某一稳定状态的结构动力响应分析方法不能准确预测拆除系统上浮过程中的动力响应。通过建立浮筒辅助大型导管架结构整体拆除上浮过程动态分析模型,对拆除系统上浮过程的动力响应特性进行研究。结果表明,整体拆除动态分析模型可以准确描述拆除系统上浮过程中浮筒及导管架浮力变化对上浮高度的影响机制,拆除系统上浮高度约为不考虑浮筒和导管架浮力变化时的90%。此外,浮筒辅助大型导管架整体拆除方法的动态稳定性较强,四级海况下拆除系统的最大偏移量仅为4.2 m,有较好的工程应用前景。  相似文献   

10.
大型多连通域浮式平台的典型代表是大型海上旅游浮式综合体,依据概念设计,开展大型多连通域浮式平台的波浪载荷水池模型试验研究,试验对不同海况下4种典型多连通域浮式平台方案进行波浪载荷测量,包括剖面的垂向弯矩、水平弯矩和扭矩等,通过观察试验现象和分析测量数据,获得了不同方案大型多连通域浮式平台的波浪载荷特性。试验结果表明:由于平台质量大、振动阻尼大,所以高频载荷成分小;平台在自由状态下载荷值基本都小于平台只释放垂荡状态载荷值;在方案四高波高状态下,平台波浪载荷的高频成分包含了波浪的非线性、约束柱与平台之间的耦合、平台自身的高频振动等。研究成果可为大型海上旅游浮式综合体的结构设计提供设计载荷输入,支撑平台的强度校核评估。  相似文献   

11.
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.  相似文献   

12.
A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuff work especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.  相似文献   

13.
Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.  相似文献   

14.
1 .Introduction Since the most significant feature of a movingloadisits mobility,the interaction betweenthe ve-hicle and bridge is very complicated,which can be classified as a coupled vibration problem.There-fore ,much attention has been paid to the dyna…  相似文献   

15.
针对张力腿系泊浮式风力机的基础运动,忽略柔性构件的影响,建立气动—水动—系泊非线性耦合运动方程。在运动控制方程中包含张力腿系泊系统的非线性回复刚度,桨距角控制以及浮式基础运动对空气动力载荷的影响。在波浪载荷的计算中考虑二阶波浪载荷的作用。采用随机频率相位角调制法生成畸形波波面时历,计算在畸形波作用下张力腿型浮式风力机的动力响应特性。数值模拟结果表明,在畸形波作用下,浮式基础的运动及空气动力性能均受到了显著的影响。其中浮式基础的纵荡和纵摇运动分别受二阶差频与和频波浪力的影响,而垂荡运动的增加则主要是受下沉运动的影响。在畸形波经过的时刻,风力机的功率系数迅速下降,水平方向的风载荷波动先减小,随后其数值急剧下降,而垂直方向的风载荷波动增大。  相似文献   

16.
The dynamically coupled interaction between the hull of a floating platform and its risers and tendons plays an important role in the global motions of the platform and the tension loads in the tendons and risers. This is an especially critical design issue in the frequency ranges outside the wave frequencies of significant energy content. This study examines the importance of this coupled dynamic interaction and the effectiveness of different approaches for their prediction. A numerical code, named COUPLE, has been developed for computing the motions and tensions pertaining to a moored floating structure positioned and restrained by its mooring/tendon and riser systems. In this study the experimentally measured motions of a mini-TLP are compared with those computed using COUPLE and alternative predictions based upon quasi-static analysis. The comparisons confirm that COUPLE is able to predict the dynamic interaction between the hull and its tendon and riser systems while the related quasi-static analysis fails. The comparisons also show that wave loads on the mini-TLP can be accurately predicted using the Morison equation provided that the wavelength of incident waves is much longer than the diameters of the columns and pontoons and that the wave kinematics used are sufficiently accurate. Although these findings are based upon the case of a mini-TLP, they are expected to be relevant to a wide range of floating or compliant deepwater structures.  相似文献   

17.
白旭  杨翔宇 《海洋工程》2022,40(1):74-81
海上浮式风力机受风、浪、流等外部载荷影响,运营期间经常处于偏航工况,给风力机基础运动响应和锚泊载荷带来重要影响.基于经典叶素动量理论及势流理论,建立海上浮式风力机水—气动力耦合分析模型,对在非定常风、不规则波浪联合作用下,风力机偏航时基础运动响应及锚泊载荷等进行分析.研究发现,额定风速工况下,风力机偏航对平台纵荡和纵摇运动影响较大,偏航30°时纵荡和纵摇平均值比偏航0°时分别下降20.68%和37.36%,垂荡运动响应受风力机偏航影响较小;锚泊载荷变化趋势与平台运动及锚链布置有关,平台纵荡对锚泊载荷影响较大,偏航30°时锚链#1有效张力平均值比偏航0°时下降12.98%.  相似文献   

18.
Slamming on bracings of column stabilized units shall be considered as a possible limiting criterion under transit condition based on the requirements in DNV-OS-C103. However, the wave slamming loads under survival condition were ignored for the strength analysis of the brace structures in many semi-submersible projects. In this paper, a method of strength analysis of brace structure is proposed based on the reconstruction and extrapolation of numerical model. The full-scale mooring system, the wind, wave and current loads can be considered simultaneously. Firstly, the model tests of the semi-submersible platform in wind tunnel and wave tanker have been carried out. Secondly, the numerical models of the platform are reconstructed and extrapolated based on the results of model tests. Then, a nonlinear numerical analysis has been conducted to study the wave slamming load on brace in semi-submersible platform through the reconstructed and extrapolated numerical model. For the randomness of wave load, ten subcases under each condition have been carried out. The value of the 90% Gumble distribution values of the ten subcases are used. Finally, the strength on brace structure has been analyzed considering the wave slamming. The wave slamming loads have been compared between the survival condition and transit condition with the method. The results indicate that wave slamming under survival condition is more critical than that under transit condition. Meanwhile, the wave slamming is significant to the structural strength of the brace. It should be overall considered in the strength analysis of the brace structure.  相似文献   

19.
半潜浮式风机逐渐在深海风电开发中受到关注,建立风机、平台与系泊结构耦合数值计算模型,通过FAST与AQWA链接进行风机塔基荷载及平台运动响应相互耦合传递,基于随机波与极限波组合模型生成畸形波时程序列,进行半潜浮式风机系泊失效全过程时域模拟计算分析,得出系泊锚链张力、风机、塔筒和平台运动时程响应,探究系泊失效、风机停机和叶片变桨速率对浮式风机平台系泊结构动力响应的影响。结果表明:畸形波作用下浮式平台和系泊结构动力响应显著,系泊失效导致塔基剪力增加,平台纵荡和纵摇运动响应显著增大;风机停机会引起系泊锚链张力显著减小,转子推力、塔基剪力和叶尖挥舞位移响应逐渐衰减,平台纵荡、纵摇和横摇运动响应显著减小;随着叶片变桨速率增加,风机转子推力和塔基剪力波动幅值增大。  相似文献   

20.
唐友刚  宋凯  王宾 《海洋工程》2015,29(6):835-846
The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum (BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundation- mooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号