首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
南丹县六寨生物礁,产于中泥盆世东岗岭组中。它长4.5km、宽300m,最大厚度达158m,是广西最大的生物礁之一。该礁体属台地边缘相中的堤礁,可细分为六个亚相。岩石类型有棘屑灰岩,塌积角砾岩,生物屑灰岩,层孔虫——珊瑚灰岩、泥晶灰岩等。造礁生物有层孔虫、刺毛类,附礁生物有珊瑚、腕足类、棘皮类等。礁体生长经历了二个阶段,五个造礁时期,至东岗岭末期即告结束。  相似文献   

2.
羌塘盆地生物礁岩特征与沉积模式   总被引:3,自引:2,他引:3       下载免费PDF全文
在三叠纪-白垩纪,特提斯海域内发育有大量的生物礁岩,羌塘盆地内亦广泛发育。生物礁沉积序列可划分为4类:(1)浅滩相生屑灰岩、核形石灰岩→生物礁岩→开阔台地相泥晶灰岩→斜坡相角砾岩;(2)开阔台地相灰岩→生物礁岩→局限台地相白云质灰岩;(3)浅滩相生屑灰岩→滨岸相碎屑岩;(4)潮坪相粉砂岩、泥灰岩→潮坪砂坝生屑灰岩→生物礁岩→潮坪砂坝生屑灰岩→潮坪相泥灰岩。生物礁岩可分为骨架岩、障积岩与粘结岩3种成因类型。成岩作用有重结晶、胶结、压实、压溶与破裂、溶蚀作用等。主要孔隙类型包括原生孔隙、裂隙与溶蚀孔、缝三类。晚三叠世造礁生物主要为珊瑚和藻类;中晚侏罗世以珊瑚礁与海绵礁为主。生物礁岩以海进体系为主,高位体系域也有发育,低位体系域中少见。可分为珊瑚礁、海绵礁、藻礁和层孔虫礁。南羌塘坳陷西部以珊瑚礁为主,东部以海绵礁为主;北羌塘坳陷西部为藻类珊瑚礁、层孔虫礁,台地内部有珊瑚礁、海绵礁。按古地理位置可分为台地边缘礁和台地内部礁,前者分布规模大,在地震剖面上也有明显的反映,有可能成为重要的油气储层。生物礁的发育状况全球海平面升降所控制。  相似文献   

3.
要乐  王向东  李越  郄文昆  林巍 《地质论评》2014,60(6):1381-1392
黔南惠水雅水剖面下石炭统上司组底部含有厚度约7m的生物沉积和建造灰岩,为上下生屑滩夹含5m厚的珊瑚格架礁,微相类型丰富,可划分出4种类型:1泥粒状灰岩;2粒泥状灰岩;3珊瑚障积岩;4层孔虫盖覆岩。在生屑滩沉积生物碎屑泥粒状灰岩中,珊瑚、腕足类、钙藻、介形类、海百合茎等破碎程度高,分选性低,为较强水动力条件远距离或频繁搬运后快速沉积的产物,此时不适宜大型珊瑚原地生长保存,仅见少量而单调的单体四射珊瑚和复体四射珊瑚。珊瑚格架礁以生物碎屑粒泥状灰岩、珊瑚障积岩为主,发育少量层孔虫盖覆岩和藻类粘结作用。腕足类、钙藻、有孔虫、海百合茎、介形类、腹足类较为丰富,苔藓虫以及层孔虫的丰度未达到支撑程度,昭示珊瑚格架礁生长期的水动力条件减弱,为单体四射珊瑚、笛管珊瑚(Syringopora)和丛管珊瑚(Siphonodendron)为主体的珊瑚群落形成原地礁灰岩创造了条件。  相似文献   

4.
侯方浩  兰贵 《沉积学报》1994,12(4):51-57
川西北广元-陕西宁强间下志留统巨厚的暗色泥岩地层中赋存有数以百计的生物礁,包括堤礁、点礁、堤状点礁群、生物岩丘、灰泥丘、层状岩丘,出露好,大小不一。礁是在浅水陆棚泥岩相的基础上发育起来的.造礁生物主要为横板珊瑚属的链珊瑚和蜂窝珊瑚及泡孔目的皮壳状、半球状苔藓虫。礁发育的基底主要为泥基质疙瘩状灰岩,也可以是生屑滩、近基风暴岩和淹没的潮坪层纹石灰岩。礁的衰亡以淹死型为主,少数为旱死型。在广元河湾场地区的河深1井钻遇礁组合53.55m,中途测试有气浸显示、川南井下亦钻遇生物灰岩、生清灰岩(可能即为生物礁),见沥青充填裂隙、晶洞。包绕礁体的暗色泥岩有机炭丰度高。因之,志留系生物礁有希望成为四川盆地潜在的油气勘探目的层。  相似文献   

5.
德国泥盆纪的层孔虫十分繁盛,不同形态、不同规模的层孔虫礁体广泛发育于台地内部、台地边缘和深海盆地内的火山周日。块状层孔虫是主要的造礁生物,四射珊瑚也参与了造礁,但数量极少。礁区岩相分异明显,盆地相、礁前相、礁核相和礁后泻湖相清晰可辨。部分礁体,如布瑞隆环礁显示清楚的初殖、拓殖、繁殖和衰亡四个演化阶段。层孔虫礁的主要繁盛期为吉维特期-弗拉斯期。德国泥盆纪生物礁的基本特征类似于加拿大同时期的生物礁,但在德国泥盆纪的礁灰岩杂体内至今尚未发现有经济价值的石油和天然气。这可能与莱茵海西地槽复杂的地质发展史有关。  相似文献   

6.
塔中地区中上奥陶统台地镶边体系分析   总被引:68,自引:6,他引:62       下载免费PDF全文
塔里木盆地塔中地区中上奥陶统碳酸盐岩台地边缘以发育良好的多种粒屑滩和生物礁组成的镶边沉积体系为特征。通过精细的单井相分析,识别出砂屑滩、砾屑滩、生屑滩以及鲕粒滩等,并且区分出3种不同类型的生物礁:①隐藻灰泥丘;②主要由枝状苔藓虫、海绵或(和)珊瑚建造的障积礁;③由石质海绵、托盘类、层孔虫、珊瑚、管孔藻等建造的骨架礁。在面向深水盆地的台缘外带,以发育中~高能粒屑滩和骨架礁组合为特征。在背靠开阔海台地的台缘内带,主要表现为中低能粒屑滩、隐藻灰泥丘以及障积礁的组合。这个台缘镶边沉积体系总体上沿塔中1号断层西侧呈北西-南东向长带状展布,长度100多公里,是本区重要的油气聚集带之一。储层质量台缘外带总体上优于台缘内带,其中骨架礁礁核和粒屑滩灰岩最好,礁间海和滩间海沉积物较差。  相似文献   

7.
德国泥盆纪的层孔虫十分繁盛,不同形态,不同规模的层孔虫礁体广泛发育于台地内部,台地边缘和深海盆地内的火山周围。块状层孔虫是主要的造礁生物,四射珊瑚也参与了造礁,但数量极少。礁区岩相分异业显,盆地相,礁前相,礁核相和礁后泻湖相清晰可辨。部分礁体,如布瑞降礁显示清楚的初殖,拓殖,繁殖和衰亡四个演化阶段。层孔虫礁的主要繁盛期为吉维特期-弗拉斯期。德国泥盆纪生物礁的基本特征类似于加拿大同时期的生物礁,但在  相似文献   

8.
华南泥盆纪生物礁演化及其控制因素   总被引:2,自引:1,他引:1       下载免费PDF全文
通过对华南泥盆纪生物礁现有资料和作者获得的实际材料的分析研究,编制了华南早、中、晚泥 盆世生物礁分布图。华南泥盆纪生物礁最早出现在埃姆斯晚期,分布层位由西南向北东逐渐上升。华南泥盆纪 生物礁分布和演化具有 3方面的特征:(1)不同类型生物礁演化差异很大:浅水礁变化最大,台缘礁变化次之, 深水礁几乎没有变化;(2)主要造礁生物随时间演替明显:床板珊瑚 ( 埃姆斯期)→床板珊瑚、四射珊瑚和层 孔虫 ( 艾菲尔期)→层孔虫和四射珊瑚 ( 吉维特期)→层孔虫 ( 弗拉期)→菌藻类 ( 法门期) ;(3)生物礁数 量和规模在吉维特期出现峰值。研究表明:华南泥盆纪生物礁的发育受区域和全球性因素的共同制约,其中温 度、大气中 CO2 分压 ( PCO2)和植被-森林生态系等全球性因素对华南泥盆纪生物礁有重要影响。  相似文献   

9.
上扬子区志留纪早期的浅水相灰岩和壳相动物分布,多局限于滇黔桂古陆之北陆浅海近岸带。黔东北石阡兰多维列世埃隆期香树园组上部记录了华南板块奥陶纪末生物灭绝事件之后最早后生动物礁群落的复苏,持续相对长时间清澈浅水环境是造礁的基本条件,南陆北海的古地貌塑造了礁体各亚相的展布方式,礁灰岩南北延伸出露宽度约为150m,最大保存厚度约为20余米,形态学上呈现点礁特征。棘屑滩之上的珊瑚—层孔虫格架礁具有较高的生物多样性,属全球志留纪最常见的礁灰岩类型;南侧为礁后薄层棘屑滩堆积;礁核部位的大量珊瑚—层孔虫原地生长格架具有抗浪性,并障积不同粒度的壳相化石和内碎屑颗粒,有利于加速沉积形成块状礁灰岩和正向地貌;礁体北端为薄层生屑灰岩夹少量粉砂—泥质薄层的礁前沉积区;礁顶薄层灰岩中粉砂质—泥质成分逐渐取代珊瑚—层孔虫格架岩,相变为雷家屯组下部的陆源碎屑岩沉积,海水浑浊度增高是终止生物礁群落栖居的主控因素。  相似文献   

10.
中扬子西部下志留统灰岩、生物礁的分布与奥陶纪-志留纪之交"崇余运动"形成的NE向分布的古隆起相关,沿着鄂西利川-重庆石柱-南川一线,在早志留世小河坝期发育大型水下古隆起,小河坝中期(相当turriculatus带底部)发生区域性海侵,有利于钙质沉积,在鄂西宣恩高罗等古隆起的边缘发育生物礁。高罗生物礁是在陆棚相泥质条带灰岩礁基之上发育的一套以珊瑚和层孔虫为造架生物的生物礁,主要出露礁核的背风面沉积,造架生物间充填含大量藻类的泥岩,指示较深水、宁静的沉积环境。中扬子地区下志留统生物礁是除小河坝砂岩体之外重要的储层类型。  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

15.
16.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

17.
18.
19.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

20.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号