首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the field of seismic interferometry, researchers have retrieved surface waves and body waves by cross‐correlating recordings of uncorrelated noise sources to extract useful subsurface information. The retrieved wavefields in most applications are between receivers. When the positions of the noise sources are known, inter‐source interferometry can be applied to retrieve the wavefields between sources, thus turning sources into virtual receivers. Previous applications of this form of interferometry assume impulsive point sources or transient sources with similar signatures. We investigate the requirements of applying inter‐source seismic interferometry using non‐transient noise sources with known positions to retrieve reflection responses at those positions and show the results using synthetic drilling noise as source. We show that, if pilot signals (estimates of the drill‐bit signals) are not available, it is required that the drill‐bit signals are the same and that the phases of the virtual reflections at drill‐bit positions can be retrieved by deconvolution interferometry or by cross‐coherence interferometry. Further, for this case, classic interferometry by cross‐correlation can be used if the source power spectrum can be estimated. If pilot signals are available, virtual reflection responses can be obtained by first using standard seismic‐while‐drilling processing techniques such as pilot cross‐correlation and pilot deconvolution to remove the drill‐bit signatures in the data and then applying cross‐correlation interferometry. Therefore, provided that pilot signals are reliable, drill‐bit data can be redatumed from surface to borehole depths using this inter‐source interferometry approach without any velocity information of the medium, and we show that a well‐positioned image below the borehole can be obtained using interferometrically redatumed reflection responses with just a simple velocity model. We discuss some of the practical hurdles that restrict the application of the proposed method offshore.  相似文献   

2.
Interferometric redatuming is a data‐driven method to transform seismic responses with sources at one level and receivers at a deeper level into virtual reflection data with both sources and receivers at the deeper level. Although this method has traditionally been applied by cross‐correlation, accurate redatuming through a heterogeneous overburden requires solving a multidimensional deconvolution problem. Input data can be obtained either by direct observation (for instance in a horizontal borehole), by modelling or by a novel iterative scheme that is currently being developed. The output of interferometric redatuming can be used for imaging below the redatuming level, resulting in a so‐called interferometric image. Internal multiples from above the redatuming level are eliminated during this process. In the past, we introduced point‐spread functions for interferometric redatuming by cross‐correlation. These point‐spread functions quantify distortions in the redatumed data, caused by internal multiple reflections in the overburden. In this paper, we define point‐spread functions for interferometric imaging to quantify these distortions in the image domain. These point‐spread functions are similar to conventional resolution functions for seismic migration but they contain additional information on the internal multiples in the overburden and they are partly data‐driven. We show how these point‐spread functions can be visualized to diagnose image defocusing and artefacts. Finally, we illustrate how point‐spread functions can also be defined for interferometric imaging with passive noise sources in the subsurface or with simultaneous‐source acquisition at the surface.  相似文献   

3.
受井中检波器串级数局限,垂直地震剖面(VSP)反射波成像范围窄,且不能对井中最浅接收点上方区域有效成像.虽然多次波成像能扩大成像范围,但在实际应用中尚有诸多困难和挑战.本文根据Wapenaar的地震干涉理论,基于上下行波场分离技术,研发了VSP地震干涉成像方法.该方法将VSP自由表面多次波重建为在地表震源位置激发(虚震源)接收的拟地面地震反射波,然后偏移成像,以达到对多次波间接成像的目的.通过数值模型实验,测试了VSP干涉成像的极限分辨率,并讨论了主要采集参数的影响,结果表明:该方法的垂向和水平极限分辨率分别达约10m和20m,且能分辨深度达6500m处的50m×100m溶洞;采用12至24道井中检波器串采集的VSP资料,其干涉成像结果显著优于VSP反射波成像,与相应的地面地震成像效果相当.将本文方法应用于新疆地区采集的VSP资料,结果表明:与VSP反射波成像相比,成像同相轴更加连续,成像范围显著扩大;与地面地震成像相比,成像结果相当,尤其在浅中部甚至更好.新方法不仅无需进行井中接收点静校正,且能显著增大成像范围,有利于成像同相轴的追踪对比、地震属性提取和地质解释,尤其对中国新疆地区深部缝洞型储层的成像,具有广泛的实际应用前景.  相似文献   

4.
For data acquired with conventional acquisition techniques, surface multiples are usually considered as noise events that obscure the primaries. However, in this paper we demonstrate that for the situation of blended acquisition, meaning that different sources are shooting in a time‐overlapping fashion, multiples can be used to ‘deblend’ the seismic measurements. We utilize the recently introduced estimation of primaries by sparse inversion (EPSI) methodology, in which the primary impulse responses are considered to be the unknowns in a large‐scale inversion process. With some modifications the estimation of primaries by sparse inversion method can be used for blended seismic data. As output this process gives unblended primary impulse responses with point sources and receivers at the surface, which can be used directly in traditional imaging schemes. It turns out that extra information is needed to improve on the deblending of events that do not have much associated multiple energy in the data, such as steep events at large offsets. We demonstrate that this information can be brought in during acquisition and during processing. The methodology is illustrated on 2D synthetic data.  相似文献   

5.
干涉走时微地震震源定位方法   总被引:5,自引:3,他引:2       下载免费PDF全文
本文基于地震波场干涉原理,建立了干涉走时微地震震源定位方法.该方法将两个接收点相对于一个微地震事件的走时差(称为干涉走时)的扰动作为残差函数,通过迭代求解最小残差函数,最终获得震源的空间位置.干涉走时震源定位方法利用两个接收点的到时差消除发震时刻未知和速度模型误差的影响,简化了震源定位算法.数值计算表明,本文提出的干涉走时定位方法在速度模型有误差的情况下仍然可以获得准确的微地震震源定位.  相似文献   

6.
We apply interferometric theory to solve a three‐dimensional seismic residual statics problem to improve reflection imaging. The approach calculates the static solutions without picking the first arrivals from the shot or receiver gathers. The static correction accuracy can be significantly improved by utilising stacked virtual refraction gathers in the calculations. Shots and receivers may be placed at any position in a three‐dimensional seismic land survey. Therefore, it is difficult to determine stationary shots and receivers to form the virtual refraction traces that have identical arrival times, as in a two‐dimensional scenario. To overcome this problem, we use a three‐dimensional super‐virtual interferometry method for residual static calculations. The virtual refraction for a stationary shot/receiver pair is obtained via an integral along the receiver/shot lines, which does not require knowledge of the stationary locations. We pick the maximum energy times on the interferometric stacks and solve a set of linear equations to derive reliable residual static solutions. We further apply the approach to both synthetic and real data.  相似文献   

7.
In regions where active source seismic exploration is constrained by limitations of energy penetration and recovery, cost and logistical concerns, or regulatory restrictions, analysis of natural source seismic data may provide an alternative. In this study, we investigate the feasibility of using locally‐generated seismic noise in the 2–6 Hz band to obtain a subsurface model via interferometric analysis. We apply this technique to three‐component data recorded during the La Barge Passive Seismic Experiment, a local deployment in south‐western Wyoming that recorded continuous seismic data between November 2008 and June 2009. We find traffic noise from a nearby state road to be the dominant source of surface waves recorded on the array and observe surface wave arrivals associated with this source up to distances of 5 kms. The orientation of the road with respect to the deployment ensures a large number of stationary points, leading to clear observations on both in‐line and cross‐line virtual source‐receiver pairs. This results in a large number of usable interferograms, which in turn enables the application of standard active source processing methods like signal processing, common offset stacking and traveltime inversion. We investigate the dependency of the interferograms on the amount of data, on a range of processing parameters and on the choice of the interferometry algorithm. The obtained interferograms exhibit a high signal‐to‐noise ratio on all three components. Rotation of the horizontal components to the radial/transverse direction facilitates the separation of Rayleigh and Love waves. Though the narrow frequency spectrum of the surface waves prevents the inversion for depth‐dependent shear‐wave velocities, we are able to map the arrival times of the surface waves to laterally varying group and phase velocities for both Rayleigh and Love waves. Our results correlate well with the known geological structure. We outline a scheme for obtaining localized surface wave velocities from local noise sources and show how the processing of passive data benefits from a combination with well‐established exploration seismology methods. We highlight the differences with interferometry applied to crustal scale data and conclude with recommendations for similar deployments.  相似文献   

8.
Scattered ground roll is a type of noise observed in land seismic data that can be particularly difficult to suppress. Typically, this type of noise cannot be removed using conventional velocity‐based filters. In this paper, we discuss a model‐driven form of seismic interferometry that allows suppression of scattered ground‐roll noise in land seismic data. The conventional cross‐correlate and stack interferometry approach results in scattered noise estimates between two receiver locations (i.e. as if one of the receivers had been replaced by a source). For noise suppression, this requires that each source we wish to attenuate the noise from is co‐located with a receiver. The model‐driven form differs, as the use of a simple model in place of one of the inputs for interferometry allows the scattered noise estimate to be made between a source and a receiver. This allows the method to be more flexible, as co‐location of sources and receivers is not required, and the method can be applied to data sets with a variety of different acquisition geometries. A simple plane‐wave model is used, allowing the method to remain relatively data driven, with weighting factors for the plane waves determined using a least‐squares solution. Using a number of both synthetic and real two‐dimensional (2D) and three‐dimensional (3D) land seismic data sets, we show that this model‐driven approach provides effective results, allowing suppression of scattered ground‐roll noise without having an adverse effect on the underlying signal.  相似文献   

9.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

10.
We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green's function and a model‐based Green's function for a water‐layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up‐ and downgoing separation of both recorded and model‐based Green's functions can help in minimizing artefacts in a virtual shot gather. If the up‐ and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non‐stationary 1D multi‐channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f‐k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method.  相似文献   

11.
In conventional seismic exploration, especially in marine seismic exploration, shot gathers with missing near‐offset traces are common. Interferometric interpolation methods are one of a range of different methods that have been developed to solve this problem. Interferometric interpolation methods differ from conventional interpolation methods as they utilise information from multiples in the interpolation process. In this study, we apply both conventional interferometric interpolation (shot domain) and multi‐domain interferometric interpolation (shot and receiver domain) to a synthetic and a real‐towed marine dataset from the Baltic Sea with the primary aim of improving the image of the seabed by extrapolation of a near‐offset gap. We utilise a matching filter after interferometric interpolation to partially mitigate artefacts and coherent noise associated with the far‐field approximation and a limited recording aperture size. The results show that an improved image of the seabed is obtained after performing interferometric interpolation. In most cases, the results from multi‐domain interferometric interpolation are similar to those from conventional interferometric interpolation. However, when the source–receiver aperture is limited, the multi‐domain method performs better. A quantitative analysis for assessing the performance of interferometric interpolation shows that multi‐domain interferometric interpolation typically performs better than conventional interferometric interpolation. We also benchmark the interpolated results generated by interferometric interpolation against those obtained using sparse recovery interpolation.  相似文献   

12.
应用地震干涉法定位四川九寨沟7.0级地震震源位置   总被引:2,自引:1,他引:1       下载免费PDF全文
赵博  高原  梁建宏  刘杰 《地球物理学报》2018,61(6):2292-2300
利用地震干涉法对2017年8月8日九寨沟M7.0主震及部分余震进行定位.地震干涉法在可控源地震勘探领域有着广泛应用,但由于震源机制和震源辐射花样的复杂性,在天然地震研究中,地震干涉震源成像应用较少.本研究将地震干涉震源成像技术应用到了天然地震定位中,通过计算原始地震波形记录的特征函数,消除了由于震源辐射花样不同而引起的初动方向不一致性.通过对干涉波形进行偏移叠加,选择互相关型和卷积型两种偏移核函数,分别对震源水平位置和深度进行偏移成像,确定了九寨沟M7.0主震及11次M > 3.5余震的震源位置参数.结果显示,这次地震发生在一个之前未被关注的无名断裂(现已命名为树正断裂)上,研究分析推测,树正断裂与虎牙断裂存在连接的可能性.  相似文献   

13.
The geological storage of carbon dioxide is considered as one of the measures to reduce greenhouse gas emissions and to mitigate global warming. Operators of storage sites are required to demonstrate safe containment and stable behaviour of the storage complex that is achieved by geophysical and geochemical monitoring, combined with reservoir simulations. For site characterization, as well as for imaging the carbon dioxide plume in the reservoir complex and detecting potential leakage, surface and surface‐borehole time‐lapse seismic monitoring surveys are the most widespread and established tools. At the Ketzin pilot site for carbon dioxide storage, permanently installed fibre‐optic cables, initially deployed for distributed temperature sensing, were used as seismic receiver arrays, demonstrating their ability to provide high‐resolution images of the storage formation. A vertical seismic profiling experiment was acquired using 23 source point locations and the daisy‐chained deployment of a fibre‐optic cable in four wells as a receiver array. The data were used to generate a 3D vertical seismic profiling cube, complementing the large‐scale 3D surface seismic measurements by a high resolution image of the reservoir close to the injection well. Stacking long vibro‐sweeps at each source location resulted in vertical seismic profiling shot gathers characterized by a signal‐to‐noise ratio similar to gathers acquired using geophones. A detailed data analysis shows strong dependency of data quality on borehole conditions with significantly better signal‐to‐noise ratio in regions with good coupling conditions.  相似文献   

14.
A focusing acoustic wave field, emitted into a medium from its boundary, converges to a focal spot around the designated focal point. Subsequently, the focused field acts as a virtual source that emits a field propagating away from the focal point, mimicking the response to a real source at the position of the focal point. In this first part of a two‐part review paper on virtual sources and their responses, we define the focusing wave field as the time reversal of an observed point‐source response. This approach underlies time‐reversal acoustics and seismic interferometry. We analyse the propagation of a time‐reversed point‐source response through an inhomogeneous medium, paying particular attention to the effect of internal multiples. We investigate the differences between emitting the focusing field from a closed boundary and from an open boundary, and we analyse in detail the properties of the virtual source. Whereas emitting the time‐reversed field from a closed boundary yields an accurate isotropic virtual source, emitting the field from an open boundary leads to a highly directional virtual source and significant artefacts related to multiple scattering. The latter problems are addressed in Part II, where we define the focusing wave field as an inverse filter that accounts for primaries and multiples.  相似文献   

15.
Time‐lapse seismic surveying has become an accepted tool for reservoir monitoring applications, thus placing a high premium on data repeatability. One factor affecting data repeatability is the influence of the rough sea‐surface on the ghost reflection and the resulting seismic wavelets of the sources and receivers. During data analysis, the sea‐surface is normally assumed to be stationary and, indeed, to be flat. The non‐flatness of the sea‐surface introduces amplitude and phase perturbations to the source and receiver responses and these can affect the time‐lapse image. We simulated the influence of rough sea‐surfaces on seismic data acquisition. For a typical seismic line with a 48‐fold stack, a 2‐m significant‐wave‐height sea introduces RMS errors of about 5–10% into the stacked data. This level of error is probably not important for structural imaging but could be significant for time‐lapse surveying when the expected difference anomaly is small. The errors are distributed differently for sources and receivers because of the different ways they are towed. Furthermore, the source wavelet is determined by the sea shape at the moment the shot is fired, whereas the receiver wavelet is time‐varying because the sea moves significantly during the seismic record.  相似文献   

16.
Topography and severe variations of near‐surface layers lead to travel‐time perturbations for the events in seismic exploration. Usually, these perturbations could be estimated and eliminated by refraction technology. The virtual refraction method is a relatively new technique for retrieval of refraction information from seismic records contaminated by noise. Based on the virtual refraction, this paper proposes super‐virtual refraction interferometry by cross‐correlation to retrieve refraction wavefields by summing the cross‐correlation of raw refraction wavefields and virtual refraction wavefields over all receivers located outside the retrieved source and receiver pair. This method can enhance refraction signal gradually as the source–receiver offset decreases. For further enhancement of refracted waves, a scheme of hybrid virtual refraction wavefields is applied by stacking of correlation‐type and convolution‐type super‐virtual refractions. Our new method does not need any information about the near‐surface velocity model, which can solve the problem of directly unmeasured virtual refraction energy from the virtual source at the surface, and extend the acquisition aperture to its maximum extent in raw seismic records. It can also reduce random noise influence in raw seismic records effectively and improve refracted waves’ signal‐to‐noise ratio by a factor proportional to the square root of the number of receivers positioned at stationary‐phase points, based on the improvement of virtual refraction's signal‐to‐noise ratio. Using results from synthetic and field data, we show that our new method is effective to retrieve refraction information from raw seismic records and improve the accuracy of first‐arrival picks.  相似文献   

17.
地震相干偏移与数据自参照偏移的关系   总被引:5,自引:3,他引:2       下载免费PDF全文
地震相干偏移和数据自参照偏移是最近几年发展起来的地震成像新方法,并且已在地震勘探研究领域开始应用.该方法在VSP(垂直地震剖面)中的应用尤其值得关注,因为它部分地解决了一些在地面反射地震方法中难以解决的问题.地震相干偏移是用地震数据的互相关处理后的数据进行偏移,而数据自参照偏移则不必在偏移前对数据进行互相关处理,而是通过记录数据中的两个不同部分波场的延拓来互相参照进行偏移.二者的优点都是在偏移运算中可以不考虑原始震源位置、激发时间以及地震波初始传播路径.本文从偏移成像的理论出发分析了这两类算法,发现二者在成像原理上是一致的.本文还通过一个二维VSP多次波偏移的数值模拟实验,比较和归纳了这两类算法在实际应用中的特点.  相似文献   

18.
The key processes in marine seismic imaging include (i) removing from seismic data all seismic events (free-surface multiples and ghosts) which contain at least one reflection at the sea surface in their wave-propagation path, and leaving those with no reflection at the free surface (internal multiples and primaries), (ii) removing events with at least two reflections in the subsurface (internal multiples), and leaving events with only one reflection in the subsurface (primaries), and then (iii) locating the scattering points and reflectors inside the subsurface which are the sources of primaries and internal multiple events. All these processes are here explained, derived, and optimized via scattering diagrams (diagrammatica) in a way similar to the way the quantum field theory is often explained via Feynman diagrams. Our discussion of the removal of events with free-surface reflections from the data will be brief, as the diagrammatica of these events are now well understood.The main focus of this paper is the diagrammatica of internal multiples and primaries. Although these events do not contain any reflection at the sea surface, it is important to reconstruct them with scattering points near the sea surface, where seismic data are recorded. So our diagrammatica of primaries and internal multiples include events which are not directly recorded in seismic data but which can be constructed from seismic data. These events have allowed us to construct scattering diagrams of primaries and internal multiples with scattering points near the sea surface. Furthermore, these new diagrammatica of internal multiples and primaries can be used to remove internal multiples from the data.  相似文献   

19.
Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high‐resolution and super‐stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration‐scale seismic data. We now demonstrate the high‐resolution and the super‐stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal‐to‐noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super‐stacking and greatly exceeds the classical signal‐to‐noise enhancement factor of . High‐resolution and super‐stacking are properties also enjoyed by seismic interferometry and reverse‐time migration with the exact velocity model.  相似文献   

20.
Recent advances in survey design have led to conventional common‐midpoint‐based analysis being replaced by subsurface‐based seismic acquisition analysis, with emphasis on advanced techniques of illumination analysis. Among them is the so‐called focal beam method, which is a wave‐equation‐based seismic illumination analysis method. The objective of the focal beam method is to provide a quantitative insight into the combined influence of acquisition geometry, overburden structure, and migration operators on the resolution and angle‐dependent amplitude fidelity of the image. The method distinguishes between illumination and sensing capability of a particular acquisition geometry by computing the focal source beam and the focal detector beam, respectively. Sensing is related to the detection properties of a detector configuration, whereas illumination is related to the emission properties of a source configuration. The focal source beam analyses the incident wavefield at a specific subsurface grid point from all available sources, whereas the focal detector beam analyses the sensing wavefield reaching at the detector locations from the same subsurface grid point. In the past, this method could only address illumination by primary reflections. In this paper, we will extend the concept of the focal beam method to incorporate the illumination due to the surface and internal multiples. This in fact complies with the trend of including multiples in the imaging process. Multiple reflections can illuminate a target location from other angles compared with primary reflections, resulting in a higher resolution and an improved illumination. We demonstrate how an acquisition‐related footprint can be corrected using both the surface and the internal multiples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号