首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对2018年全年渤海石油平台海上观测的15个站点的风速风向进行了分析,并利用4个代表站1、4、7和10月的资料对分辨率为0.25°×0.25°NCEP/NCAR的FNL资料分析风场的误差进行了对比评估。结果表明:(1)观测风速风向存在较大区域性差异;(2)FNL风场资料在渤海地区近海风速整体偏大;(3)夏季当风速小于15 m/s时,FNL的风速可信度最高;冬季当风速大于15 m/s时,FNL的风向可信度最高;(4)秋季风向误差最高,春季次之。当风速小于5 m/s时,风向误差较大。  相似文献   

2.
利用鄱阳湖周边6个国家气象站1961—2018年逐日降水量、平均气温、最高气温、最低气温及一日四次风速风向资料,1978—2018年逐时降水量资料,以及欧洲中心1979—2018年再分析格点资料,从气候统计角度,揭示鄱阳湖冷热源作用所产生的区域气候特征,以及鄱阳湖东西侧不同时间尺度分布的气候差异。结果表明:(1)鄱阳湖地区气温日较差较江西省山区偏小2~4℃,高温日数为江西省内同纬度其他地区的一半;(2)鄱阳湖地区降水较江西其他区域偏少,湖东与湖西降水呈年内周期性差异变化:8—10月湖西降水偏多,其他月份湖东偏多,隆冬盛夏差异明显;(3)鄱阳湖两侧白天和夜晚降水存在差异,1月夜间湖东降水偏多明显,9月白天湖西降水偏多明显;(4)鄱阳湖地区存在湖陆风,1月02:00湖西(永修站)平均风速比湖东(都昌站)大,W和NNW方向风向频率偏大明显,8月14:00湖东平均风速更大,SE至S方向风向频率偏大明显;(5)鄱阳湖主湖区1月02:00较14:00大气上升运动明显,近地面差值风场辐合,8月14:00较02:00下沉运动明显,近地面差值风场辐散。  相似文献   

3.
为更好地了解风廓线雷达低层风速观测的准确性,利用356 m气象梯度塔和风廓线设备在深圳石岩气象综合观测基地进行了一次成功的风速观测对比试验(时间为2017年6月1日—8月15日)。试验对两种探测设备测得的风速资料进行了不同时次和不同高度的对比,结果表明:由两种手段获得的所有4层(100、160、300和350 m)匹配高度上风速平均值一致性很好,30 min相关系数在0.6以上,风廓线雷达探测的风速相对偏小。使用矢量法对4层高度上的风向资料进行平均,得到风向的30 min和日平均值,两者的相关系数都在0.75以上。6月12—13日"苗柏"台风影响深圳期间,两者的风速风向变化趋势一致,较好地刻画了台风的变化过程。  相似文献   

4.
第24届冬奥会海坨山赛区近两年冬季地面风场特征   总被引:1,自引:0,他引:1  
基于北京市海坨山赛区4个自动气象站2014、2015年冬半年地面风场资料,分析第24届冬奥会海坨山赛区冬季地面风场分布特征。结果表明:(1)各站冬季地面风场具有明显的风向取向以及风速值分布区间特征,其中海拔较高的A1492站风向呈明显的西西南至西北4个方位取向,10.0 m·s~(-1)以上风速的发生频率约为49.1%,月平均风速均10.0 m·s~(-1);(2)各站月平均风速最大值均出现在1月,A1489、A1490和A1491站风速最小值均出现在11月,A1492站最小值出现在3月;(3)各站日逐小时平均风速呈典型的日变化特征,08:00—16:00风速逐渐增大、16:00—18:00缓慢减小。  相似文献   

5.
利用1955—2010年的气象观测资料,对比分析我国中东部地区地理位置及海拔高度存在差异的两个高山站(南岳山和庐山)风的气候变化特征及其对夏季风的响应。分析表明:(1) 南岳山风速大于庐山,春、夏盛行西南风,秋、冬盛行北风,年内各月最大风速风向均为旺盛的西南偏南风(SSW);而庐山春、夏盛行南风,秋、冬盛行东北偏北风(NNE),年内除6、7月外最大风速的风向均为偏东北风;(2) 年及四季平均风速均呈显著减弱趋势,庐山风速减弱的趋势明显大于南岳山;(3) 两个站夏季风场的变化随夏季风季节内演变,西南风在6月初突然增强、在8月底—9月初突然减弱;(4) 两个站夏季西南风的风速与夏季风的强弱变化呈反相关关系,强夏季风年西南风偏弱,其风场特征表现为北及偏东北风频率偏多,对应风速偏强,而南及偏西南风频率明显偏少,对应风速偏弱;弱夏季风年西南风偏强,其风场特征表现为西南气流异常。   相似文献   

6.
北京夏季O3垂直分布与气象因子的相关研究   总被引:6,自引:0,他引:6  
通过分析2000年7月26日~8月22日北京325 m气象塔的O3浓度梯度观测资料及同期的气象资料,探讨了O3与NOx、风速、风向、温度及相对湿度的关系.通过建立不同风向下O3浓度与NOx、温度、相对湿度及风速的多元回归方程,证实了高浓度的O3是NOx与气象条件综合作用的结果,利用可得到的气象资料及NOx浓度值进行O3污染预报的尝试是可行的.  相似文献   

7.
湛江观测站迁移对气象要素的影响   总被引:2,自引:0,他引:2  
采用差值的方法,对湛江气象观测站新旧两站1、4、7月份的气温、湿度、风向风速对比观测气象资料进行分析,发现旧站月平均气温(包括最高、最低)均比新站偏高,其中月平均气温差值(旧站-新站)变化范围在0.5~0.8 ℃,1、7月份旧站气温偏高现象比4月明显,表现为在冷热季节里,两者温差加大;旧站相对湿度略比新站偏小;新站月平均风速、月极大风速均比旧站大,风向也不太一致.并从地理位置、测站环境、仪器安装等方面分析了形成差值的原因,为气象资料序列延续和订正提供依据,为今后查阅使用气象资料提供参考.  相似文献   

8.
通过综合运用micaps、自动站等气象资料,以及环境监测污染物浓度和AQI指数等资料,对2013—2015年廊坊市的连续重污染天气进行了分析,并细致分析探讨了在空气达到重污染背景下,气温、风向、风速、相对湿度等气象要素和多种空气污染物指数的分布特征。结果表明:(1)连续重污染具有明显的季节性特点,秋季开始出现,冬季达到顶峰,随着次年春季的到来逐渐减少至消失;(2)连续重污染的出现将导致气温升高,此时风向多为西南风—西风和偏东风,平均风速以0.3~1.5m·s^(-1)为主,最大风速多在1.6~3.3m·s^(-1)之间,相对湿度以60%~70%为最高发区间;(3)连续重污染天气的首要污染物为PM_(2.5)或PM_(10),其中以PM_(2.5)为主,比例高达94.3%,且呈逐年小幅下降趋势;(4)CO和SO_2浓度变化与采暖期污染物排放关系密切;(5)5月出现的连续重污染较少,且由大风沙尘天气造成。  相似文献   

9.
该文利用2003年3月—2011年12月三沙市高空气象探测站L波段雷达探空资料,分析了三沙低空风的变化特征。结果表明:三沙2006年3月—2011年12月高空气象探测站所测地面—1 500 m不同高度的风向变化大致相同,各层风中主要盛行NE、ENE、SSW风;静风出现最少,其次是NW、WNW、NNW风向;春季地面—1 500 m高度的风向分布为双峰形状,主要集中在NE-ENE、SSE-SSW,夏季、秋季、冬季地面—1 500 m高度的风向分布为单峰形状,夏季风向主要集中在SWSW,秋季风向主要集中在NE-E,冬季风向主要集中在NNE-ENE;地面—1 500 m的各层风中,地面平均风速最小,500 m低空平均风速最大;地面—500 m高度的风从夏季至冬季都逐渐增大,1 000~1 500 m从春季至秋季增大,冬季反而减小;地面—1 500 m平均风速11—12月份最大,3—4月份风速最小。  相似文献   

10.
汕头自动气象站与人工站测风资料对比分析   总被引:1,自引:1,他引:0  
对2004~2007年4年汕头自动气象站与人工站的测风资料统计分析,结果表明自动气象站与人工站的月平均风速、月最大风速和月极大风速,分别都存在着显著的线性关系,主、次导风向发生明显变化.  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号