首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying the extent to which geomorphic features can be used to extract tectonic signals is a key challenge in the Earth Sciences. Here we analyse the drainage patterns, geomorphic impact, and long profiles of bedrock rivers that drain across and around normal faults in a regionally significant oblique-extensional graben (Hatay Graben) in southern Turkey that has been mapped geologically, but for which there are poor constraints on the activity, slip rates and Plio–Pleistocene evolution of basin-bounding faults. We show that drainage in the Hatay Graben is strongly asymmetric, and by mapping the distribution of wind gaps, we are able to evaluate how the drainage network has evolved through time. By comparing the presence, size, and distribution of long profile convexities, we demonstrate that the northern margin of the graben is tectonically quiescent, whereas the southern margin is bounded by active faults. Our analysis suggests that rivers crossing these latter faults are undergoing a transient response to ongoing tectonic uplift, and this interpretation is supported by classic signals of transience such as gorge formation and hill slope rejuvenation within the convex reach. Additionally, we show that the height of long profile convexities varies systematically along the strike of the southern margin faults, and we argue that this effect is best explained if fault linkage has led to an increase in slip rate on the faults through time from  0.1 to 0.45 mm/yr. By measuring the average length of the original fault segments, we estimate the slip rate enhancement along the faults, and thus calculate the range of times for which fault acceleration could have occurred, given geological estimates of fault throw. These values are compared with the times and slip rates required to grow the documented long-profile convexities enabling us to quantify both the present-day slip rate on the fault (0.45 ± 0.05 mm/yr) and the timing of fault acceleration (1.4 ± 0.2 Ma). Our results have substantial implications for predicting earthquake hazard in this densely populated area (calculated potential Mw = 6.0–6.6), enable us to constrain the tectonic evolution of the graben through time, and more widely, demonstrate that geomorphic analysis can be used as an effective tool for estimating fault slip rates over time periods > 106 years, even in the absence of direct geodetic constraints.  相似文献   

2.
陈苗  胡小飞  王维 《地理学报》2018,73(9):1702-1713
河流水力侵蚀物理模型表明基岩河道纵剖面在均衡状态时表现为平滑上凹的形态,其特征反映了构造、基岩抗侵蚀能力和气候的作用;然而自然界河道纵剖面多呈现以裂点为特征的不均衡形态,不均衡的剖面形态以及裂点的研究同样可以对外力作用的变化起到很好的指示作用。位于北祁连的走廊南山高海拔河道纵剖面普遍呈现不均衡形式且发育海拔较高的裂点。通过对裂点成因分析发现,这些裂点并不主要受控于岩性、气候、构造等因素,而反映了冰川作用遗留地形与河流地形的分界。这一结果说明在对河道纵剖面高海拔裂点进行分析时要考虑到古冰川遗留地形也会对现代河道纵剖面产生重要影响,为进一步认识和理解造山带地貌演化以及控制因素提供了思路。  相似文献   

3.
《Geomorphology》2006,73(1-2):16-32
Well-constrained case studies of transient landscape response to external forcing are needed to improve our understanding of erosion processes in tectonically active mountain belts. The Peninsular Ranges portion of the San Jacinto fault zone (SJFZ) is an excellent location for such a study because it displays pronounced geomorphic disequilibrium resulting from initiation of a major strike-slip fault in the past 1.0 to 2.5 million years. We recognize two geomorphic domains in this region: (1) a relict low-relief upland domain consisting of broad flat valleys and low-gradient streams and (2) very steep, rough topography with deeply incised canyons and retreating erosional knickpoints. Pleistocene sediments exposed along and near the SJFZ include fluvial conglomerate, sandstone, and mudstone, with weak paleosols and west- to NW-directed paleocurrents. These sediments accumulated in a low-gradient stream system (represented by domain 1) during an early phase of slip in the SJFZ, prior to the modern phase of erosion and degradation (domain 2). Late Pliocene or early Pleistocene initiation of the SJFZ triggered a wave of headward erosion and stream capture that is still migrating NW along the fault zone. Using the total distance that capture points have migrated along the fault zone and a range of possible ages for fault initiation, the rate of knickpoint retreat is estimated at ∼ 12 to 44 km/my.To explore the signal of transient geomorphic response to fault initiation, we analyzed 23 tributaries along an ∼ 20-km portion of the main fault valley within domain 2. The analysis reveals three zones with distinctive morphologies: (1) strongly convex longitudinal profiles in the NW, (2) a large (ca. 5–6 km2) landslide in the central zone, and (3) concave tributaries in the SE with profile complexity decreasing and catchment area increasing from NW to SE. The distribution of these zones suggests close spatial and temporal association of active fault slip, bedrock incision, deep-seated landslides, and erosional modification. The fundamental driving force behind these processes is profound geomorphic disequilibrium resulting from initiation of the SJFZ. We suggest that landslides may have played a significant role in shaping the morphology of this fault zone, and that the influence of landslides may be underestimated in areas where characteristic landforms and deposits are obscured by later erosion and faulting.  相似文献   

4.
We present detailed observations of rivers crossing active normal faults in the Central Apennines, Italy, where excellent constraints exist on the temporal and spatial history of fault movement. We demonstrate that rivers with drainage areas > 10 km2 and crossing faults that have undergone an increase in throw rate within the last 1 My, have significant long-profile convexities. In contrast, channels that cross faults that have had a constant-slip rate for 3 My have concave-up profiles and have similar concavities and steepness indices to rivers that do not cross any active fault structures. This trend is consistent across the Central Apennines and cannot be explained by appeal to lithology or regional base level change. The data challenge the belief that active faulting must always be reflected in river profiles; instead, the long-profile convexities are best explained as a transient response of the river system to a change in tectonic uplift rate. Moreover, for these rivers we demonstrate that the height of the profile convexity, as measured from the fault, scales with the magnitude of the uplift rate increase on the fault; and we establish that this relationship holds for throw rate variation along strike for the same fault segment, as well as between faults. These findings are shown to be consistent with predictions of channel response to changing uplift rate rates using a detachment-limited fluvial erosion model, and they illustrate that analysis of the magnitude of profile convexities has considerable predictive potential for extracting tectonic information. We also demonstrate that the migration rate of the profile convexities varies from 1.5–10 mm/y, and is a function of the slip rate increase as well as the drainage area. This is consistent with n > 1 for the slope exponent in a classical detachment-limited stream-power erosion law, but could potentially be explained by incorporating an erosion threshold or an explicit role for sediment in enhancing erosion rates. Finally, we show that for rivers in extensional settings, where the response times to tectonic perturbation are long (in this case > 1 My), attempts to extract tectonic uplift rates from normalised steepness indices are likely to be flawed because topographic steady state has not yet been achieved.  相似文献   

5.
华北平原河流纵剖面   总被引:3,自引:0,他引:3  
本文用下凹度指标定量地描述河流纵剖面特征,华北平原诸河下凹型的纵剖面不仅与河长有关,而且也与水能有关。在综合分析影响河流纵比降因素的基础上,提出了构造运动的形变率、床砂粒径和来沙系数三要素的复式回归方程,此式体现了内外营力对河流比降的影响。  相似文献   

6.
The longitudinal profiles of main streams of ten kongdui basins within Inner Mongolian Autonomous Region of China were characterized in this study by analyzing a series of quantitative indexes that are relevant to tectonic activity and river action, and by establishing a series of multiple regression models. The results reveal that all longitudinal profiles are concave in shape, with a range of concavity between 1.1 and 3.1, increasing from west to east. Data also show that the concavity of the profiles is significantly negatively correlated with profile length, altitude difference, average altitude, drainage area and sediment load of the basins. Analysis reveals that kongdui basins have suffered from moderate-to-weak tectonic activity over time, again characterized by a west-to-east weakening trend. Stream power also varies along the main channels of the ten kongdui basins; average values in each case fall between 0.8 W/m and 8.4 W/m, generally higher within the middle reaches. This decreasing trend in stream power within the lower reaches of kongdui basins might provide one key explanation for sedimentation there. Data also show that the average stream power in western and central basins tends to be higher than that in eastern examples, even though both the highest and the lowest values are seen within two middle ones. This analysis shows that the longitudinal profile concavity values are mainly controlled by tectonic activity and that the effect of river action is insignificant.  相似文献   

7.
庐山是位于江南造山带北缘的断块山,其抬升过程对于认识本区的构造演化至关重要。利用河流纵剖面的形态参数可以定量估算相对的构造抬升速率。基于5 m分辨率的DEM提取了庐山9条主要河流的纵剖面,依据坡度—面积图确定了裂点类型,结合地质图判别出裂点成因,并利用河流水力侵蚀模型计算了稳定态河段的陡峭指数以及凹曲度。结果显示,庐山的河流基本呈过渡态,以发育数量不等的裂点为标志;垂阶型裂点的形成主要与岩石强度不均一有关,而坡断型裂点是侵蚀基准面下降产生的。坡断型裂点以下的基岩河段具有较大的陡峭指数,表明庐山经历了从早期低抬升速率到晚期高抬升速率的转变。庐山受快速抬升影响的河段,陡峭指数具有南高北低的特点,主要是由于庐山整体抬升过程中南部、北部的抬升速率存在一定差异,亦可能是岩性不同造成的。  相似文献   

8.
During previous work in the San Juan Mountains of Colorado, we observed that headwater (first-order) streams draining landslides were often characterized by the presence of beaver (Castor canadensis) dams whereas other headwater tributaries typically lacked evidence of beaver. Here, we hypothesize that hummocky landslide topography attracts beaver. To test the hypothesis, we examined 10 landslides and 11 adjacent headwater streams in the area, noting location, vegetation, elevation, and evidence of beaver activity, and then compared the landslide and non-landslide headwater streams using the G-test to determine whether or not variables were independent of one another. We reject the null hypothesis that beaver dam presence is unrelated to landslide deposits (p = 0.003). We further hypothesize that this relationship results from differences in stream gradient and concavity between landslide streams and other streams. We found streams on landslides to have a greater portion of their gradients below what geologic and ecologic literature suggests is a reasonable upper threshold (12%) for beaver dam maintenance. Additionally, streams on landslides are more concave. We conclude that the relationship between beaver presence and landslides results from a higher proportion of reaches below the 12% threshold and increased concavity of headwater streams on landslides.  相似文献   

9.
The downstream distribution of stream power is derived and analysed for 11 different streams in the upper Hunter River catchment, Australia. Stream long profiles were produced in a GIS environment using DEM data and catchment area–discharge analysis. These profiles were analysed using three approaches, namely long profile smoothing, curve fitting and a theoretical model. The methodology for deriving stream power profiles using these three approaches is discussed. The long profile smoothing method provides a good approximation of the subcatchment variability in stream power trends. The curve fitting method shows that higher-order exponential curves provide a better fit for long profile data. For the streams of the upper Hunter River catchment, second-order exponential curves fit well with significantly less error. The curve fitting method predicts a bimodal (upstream and midstream) distribution of stream power, which is a deviation from our earlier understanding of a single midstream peak. The theoretical approach provides a mathematical expression of the observed bimodal stream power distribution. The bimodal distribution emphasises the erosion potential of headwater reaches. The resultant stream power distribution provides a catchment-scale characterisation of the distribution of available energy in any given system. Using these approaches, the variability of stream power in headwater reaches is explained by discharge variability, while variability in midstream and downstream reaches is related to high variability in channel gradient.  相似文献   

10.
Stream morphology is an important indicator for revealing the geomorphological features and evolution of the Yangtze River.Existing studies on the morphology of the Yang-tze River focus on planar features.However,the vertical features are also important.Vertical features mainly control the flow ability and erosion intensity.Furthermore,traditional studies often focus on a few stream profiles in the Yangtze River.However,stream profiles are linked together by runoff nodes,thus affecting the geomorphological evolution of the Yangtze River naturally.In this study,a clustering method of stream profiles in the Yangtze River is proposed by plotting all profiles together.Then,a stream evolution index is used to investigate the geomorphological features of the stream profile clusters to reveal the evolution of the Yangtze River.Based on the stream profile clusters,the erosion base of the Yangtze River generally changes from steep to gentle from the upper reaches to the lower reaches,and the evolution degree of the stream changes from low to high.The asymmetric distribution of knickpoints in the Hanshui River Basin supports the view that the boundary of the eastward growth of the Tibetan Plateau has reached the vicinity of the Daba Mountains.  相似文献   

11.
The “perfect landscape” concept is based on the notion that any specific geomorphic system represents the combined, interacting effects of a set of generally applicable global laws and a set of geographically and historically contingent local controls. Because the joint probability of any specific combination of local and global controls is low, and the local controls are inherently idiosyncratic, the probability of existence of any given landscape is vanishingly small. A perfect landscape approach to geomorphic complexity views landscapes as circumstantial, contingent outcomes of deterministic laws operating in a specific environmental and historical context. Thus, explaining evolution of complex landscapes requires the integration of global and local approaches. Because perfection in this sense is the most important and pervasive form of complexity, the study of geomorphic complexity is not restricted to nonlinear dynamics, self-organization, or any other aspects of complexity theory. Beyond what can be achieved via complexity theory, the details of historical and geographic contexts must be addressed. One way to approach this is via synoptic analyses, where the relevant global laws are applied in specific situational contexts. A study of non-acute tributary junctions in the lower Brazos River, Texas illustrates this strategy. The application of generalizations about tributary junction angles, and of relevant theories, does not explain the unexpectedly high occurrence or the specific instances of barbed or straight junctions in the study area. At least five different causes for the development of straight or obtuse junction angles are evident in the lower Brazos. The dominant mechanism, however, is associated with river bank erosion and lateral channel migration which encroaches on upstream-oriented reaches of meandering tributaries. Because the tributaries are generally strongly incised in response to Holocene incision of the Brazos, the junctions are not readily reoriented to the expected acute angle. The findings are interpreted in the context of nonlinear divergent evolution, geographical and historical contingency, synoptic frameworks for generalizing results, and applicability of the dominant processes concept in geomorphology.  相似文献   

12.
Concavity in the long profile of rivers has traditionally been explained through the concept of grade, in which the slope declines downstream as a response to changing discharge, bed material size and sediment transport. Applying this concept to particular river systems has, however, proved problematic. The long profile reflects spatially-distributed form–process feedbacks between all aspects of channel morphology operating at a range of poorly defined time- and space-scales, and in the presence of natural controls. In many river systems, process–form dynamics are further complicated by engineering interventions which add additional extrinsic controls and constrain the range of intrinsic dynamics. In this paper, the 1974–75 long profile of the Lower Mississippi River is examined at three scales: the regional; the reach; and the sub-reach (pool–crossing) scales. A combination of curve-fitting, zonation algorithms, and empirical classification techniques are used to show that, although the long profile of the Lower Mississippi River is concave at the largest scale, the profile is characterised by discontinuities, shorter trends and zonal variations in the amplitude and wavelength of pool–crossing morphology. These characteristics are a response to morphological and bed material changes relating to a range of physical (geological, tectonic, tributary input) and engineering controls. Despite its apparent simplicity and correspondence to a ‘graded’ condition, the long profile of the Lower Mississippi River is actually a complex and scale-dependent morphological property. At best, the concave river profile is, therefore, a property which emerges from several scales of process–form interaction; at worst, it is no more than an artefact arising from the application of over-simplified curve-fitting techniques. Disclosure of the nature of the long profile thus requires the application of a variety of analytical techniques, as well as geomorphological explanations which are themselves scale-dependent and which consider the interaction of natural processes and the history of engineering intervention.  相似文献   

13.
Identification of steps and pools from stream longitudinal profile data   总被引:1,自引:0,他引:1  
Field research on step–pool channels has largely focused on the dimensions and sequence of steps and pools and how these features vary with slope, grain sizes and other governing variables. Measurements by different investigators are frequently compared, yet no means to identify steps and pools objectively have been used. Automated surveying instruments record the morphology of streams in unprecedented detail making it possible to objectively identify steps and pools, provided an appropriate classification procedure can be developed.To achieve objective identification of steps and pools from long profile survey data, we applied a series of scale-free geometric rules that include minimum step length (2.25% of bankfull width (Wb)), minimum pool length (10% of Wb), minimum residual depth (0.23% of Wb), minimum drop height (3.3% of Wb), and minimum step slope (10° greater than the mean slope). The rules perform as well as the mean response of 11 step–pool researchers who were asked to classify four long profiles, and the results correspond well with the channel morphologies identified during the field surveys from which the long profiles were generated. The method outperforms four other techniques that have been proposed. Sensitivity analysis shows that the method is most sensitive to the choice of minimum pool length and minimum drop height.Detailed bed scans of a step–pool channel created in a flume reveal that a single long profile with a fixed sampling interval poorly characterizes the steps and pools; five or more long profiles spread across the channel are required if a fixed sampling interval is used and the data suggest that survey points should be located more frequently than the diameter of the step-forming material. A single long profile collected by a surveyor who chooses breaks in slope and representative survey points was found to adequately characterize the mean bed profile.  相似文献   

14.
The Kunlun fault is one of the largest strike-slip faults in northern Tibet, China. In this paper, we focus upon the Kusai Lake–Kunlun Pass segment of the fault to understand the geomorphic development of offset streams caused by repeated large seismic events, based on tectono-geomorphic analysis of high-resolution satellite remote sensing images combined with field studies. The results indicate that systematic left-lateral stream offsets appear at various scales across the fault zone: Lateral offsets of small gullies caused by the 2001 Mw 7.8 Kunlun earthquake vary typically from 3 m to 6 m, meanwhile streams with cumulative offsets of 10 m, 25–30 m, 50–70 m, 250–300 m and 750–1400 m have resulted from repeated large seismic events during the late Quaternary. An average slip rate of 10 ± 1 mm/year has been estimated from the lateral stream offsets and 14C ages of alluvial fan surfaces incised by the streams. A three-dimensional model showing tectono-geomorphic features along a left-lateral strike-slip fault is also presented. The Kusai Lake–Kunlun Pass segment provides an opportunity to understand the relationship between geomorphic features produced by individual large seismic events and long-term geomorphic development caused by repeated large seismic events along a major strike-slip fault.  相似文献   

15.
Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20− to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10–30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5–1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene.The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20–60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly increases more systematically upslope on most facets than colluvial soils. This pattern is consistent with an increase in age with height on these fault-generated facet hillslopes.The characteristic range of internal variation in soils and colluvial deposits on a given facet also varies greatly among facets with differing overall morphologies and external environments. Deep cumulic soils and thick colluvium occur consistently on steep (≥ 30°), high, and relatively undissected facets above the narrow central sections of fault segments. Much thinner and less weathered colluvium and soils overlie saprolitic bedrock at shallow depths on low, highly dissected, gently sloping (≤ 20°) facets above complex fault segment boundaries. Parametric and nonparametric analyses of variance indicate that these large-scale contrasts in facet morphology correlate primarily with a few facet subgroups related, in decreasing importance, to variations in range-front faulting, bedrock lithology, and piedmont dissection or aggradation. These factors are related to facet morphology, drainage evolution, and hillslope-soil stratigraphy in a general geomorphic model for fault-generated facets. In this model, segmentation-related changes in the geometry and/or rates of faulting most strongly affect facet size, slope gradient, the thickness of colluvium and soil development, and drainage patterns. Facets of varying heights have similar hillslope forms at the same position on the range front; these characteristic morphologies are established under prevailing tectonic and nontectonic conditions on facets as bedrock is initially exposed from beneath alluvial-covered fault scarps above a height threshold of 15–35 m.  相似文献   

16.
Five representative soil profiles outcropping in the area around the Cecita Lake (Calabria, South Italy) were characterised by field work, chemical and mineralogical analyses, optical and scanning electron microscopy. Interactions among weathering, pedogenesis and geomorphic processes are emphasised, in an attempt to link the results obtained at different scales of observation. The important role of topography in controlling soil development or removal by erosive processes is discussed, in relation to the natural geomorphological context and the effects of human pressure. Both present-day and relict features were recognised in the studied soils, and discussed in terms of environmental conditions and climatic changes. The chemical composition of volcanoclastic components identified in some soil horizons with Andosol-like field appearance, coupled with pedogenetic features, contributed useful chronological constraints for the reconstruction of Late Quaternary geomorphic events.  相似文献   

17.
Páramos are neotropical alpine grasslands located in the northern Andes of South America. Although they cover important headwater regions, little is known about the hydro-geomorphic characteristics of páramo river systems, which are increasingly being impacted by human use and climate change. The objective of this research is to characterize the geomorphology of the Ningar River, Ecuador, an Amazonian headwater river that drains a 22.7 km2 páramo sub-basin, by (1) classifying the geomorphology based on common geomorphic classifications, (2) deriving downstream hydraulic geometry relationships, and (3) performing a global comparison with mountain river systems. Common geomorphic field surveying techniques were used to acquire the necessary data. Results suggest that the Ningar River has similar form-function characteristics as other known mountain headwater streams and corresponds to commonly known stream classification systems, but displays more of an alluvial character than might be expected for montane headwater streams as a result of a convexity in the stream’s longitudinal profile. Additionally, preliminary analyses suggest that other páramo headwater streams may exhibit similar characteristics; thus, the findings of this research are important for future management and protection of these valuable headwater ecosystems.  相似文献   

18.
金沙江三堆子-乌东德河段阶地研究   总被引:9,自引:4,他引:5  
中更新世晚期,古金沙江曾在金坪子河段发生堵江,使得金坪子河段成为金沙江发育的局部侵蚀基准点,并影响着三堆子-乌东德河段的河流下切速率。金坪子、凹嘎、龙街和鱼鲊的平均下切速率分别为196~217、145~172、257~305、82~97 cm/ka。凹嘎河段和鱼鲊河段在河谷地貌形态和阶地堆积物形成年代上都有很大差异,其原因为金沙江河谷中存在着多级构造裂点或岩性裂点,两河段性质存在差异,所以该河段不宜做传统的阶地位相分析。金沙江三堆子-乌东德河段的阶地沉积物的重矿物种类较多,以磁铁矿、赤褐铁矿、绿帘石、石榴石为主,并含有稳定矿物锆石、金红石和白钛石,以及十字石、兰晶石等典型的变质矿物。  相似文献   

19.
An analytic expression for wind-velocity profile within the saltation layer   总被引:1,自引:0,他引:1  
Z. S. Li  J. R. Ni  C. Mendoza 《Geomorphology》2004,60(3-4):359-369
The vertical wind-velocity profile within the saltation layer is investigated theoretically. New equations for the fluid shear stress distribution in the saltation layer and the velocity profile affected by saltation are derived. The dependence of the velocity profile on the threshold shear velocity, the vertical variations of sand grain velocity, the vertical sand-mass-flux distribution, and the fluid shear stress within the saltation are demonstrated. Velocity profiles with or without Bagnold's focus are predicted. These velocity profiles are not very sensitive to the vertical distribution of sand-mass flux. Predicted velocity profiles are compared with profiles measured in the wind tunnel, and satisfactory agreement has been achieved.  相似文献   

20.
黄河下游河床纵剖面形态及其地文学意义   总被引:8,自引:2,他引:6  
本文通过河床比降和凹度两个指标,研究黄河下游河床纵剖面形态的自动调整作用,结果发现比降和下凹度多年平均值分别为1.28和1.35,偏离均值为1~2%,变化很小,说明黄河下游河床纵剖面以近于平行抬升的形态调整,标志着河道已进入了老年期发育阶段。对于研究河道发育史和老年期河道的特点,以及在治河上均有重要的理论和现实意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号