首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For autonomous manipulation in water, an underwater vehicle-manipulator system (UVMS) should be able to generate trajectori9es for the vehicle and manipulators and track the planned trajectories accurately. In this paper, for trajectory generation, we suggest a performance index for redundancy resolution. This index is designed to minimize the restoring moments of the UVMS during manipulation, and it is optimized without impeding the performance of a given task. As a result, the restoring moments of the UVMS are decreased, and control efforts are also reduced. For tracking control of the UVMS, a nonlinear H optimal control with disturbance observer is proposed. This control is robust against parameter uncertainties, external disturbances, and actuator nonlinearities. Numerical simulations are presented to demonstrate the performance of the proposed coordinated motion control of the UVMS. The results show that control inputs for tracking are reduced, and the UVMS can successfully track generated trajectories.  相似文献   

2.
水下机器人-机械臂系统的滑模自抗扰控制   总被引:1,自引:0,他引:1  
李小岗  王红都  黎明  刘鑫 《海洋科学》2020,44(9):130-138
针对水下机器人机械臂系统的强耦合、强非线性、复杂海洋多源干扰等因素影响,提出了滑模自抗扰控制器,将复杂系统模型转变为简单的积分串联系统,将内部参数不确定性、测量误差、建模误差和海洋多源干扰等扰动归结为总扰动,并采用线性扩张观测器对其进行估计并抵消。利用滑模控制器提高系统对参数摄动的不敏感性,增强控制系统的抗干扰性能,通过李雅普诺夫理论分析了控制系统的有界稳定性。仿真结果表明滑模自抗扰与传统滑模控制和自抗扰控制相比,能使水下机器人机械臂实现更好的轨迹跟踪,且系统具有更好的抗干扰能力。  相似文献   

3.
水下滑翔器整体外形设计及水动力性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对水下滑翔器的整体外形设计与水动力性能进行研究。在Slocum等几种典型水下滑翔器样机的基础上,对滑翔器的主体和附体进行一体化设计,得到阻力最小的新型水下滑翔器构型设计。利用CFD方法对水下滑翔器进行模拟仿真,通过分析对比五种主体构型,得到了比较合理的主体线型,然后用正交设计方法和曲线拟合法对附体进行了优选工作,最后得到了性能更优的整体载体外形。模拟仿真实验表明,滑翔器在8°左右攻角航行时,具有最大的升阻比;和Slocum等经典样机相比,新的载体具有更好的水动力性能。通过上述研究工作,也可以缩短水下滑翔器研制周期,降低设计成本,并为水下滑翔器的更优设计提供了有力的技术指导和参考。  相似文献   

4.
In this study, a dynamic modeling method for foil-like underwater vehicles is introduced and experimentally verified in different sea tests of the Hadal ARV. The dumping force of a foil-like underwater vehicle is sensitive to swing motion. Some foil-like underwater vehicles swing periodically when performing a free-fall dive task in experiments. Models using conventional modeling methods yield solutions with asymptotic stability, which cannot simulate the self-sustained swing motion. By improving the ridge regression optimization algorithm, a grey-box modeling method based on 378 viscous drag coefficients using the Taylor series expansion is proposed in this study. The method is optimized for over-fitting and convergence problems caused by large parameter matrices. Instead of the PMM test data, the unsteady computational fluid dynamics calculation results are used in modeling. The obtained model can better simulate the swing motion of the underwater vehicle. Simulation and experimental results show a good consistency in free-fall tests during sea trials, as well as a prediction of the dive speed in the swing state.  相似文献   

5.
水下机器人-机械手系统构建与研究   总被引:1,自引:0,他引:1  
描述了一水下机器人——机械手系统研究平台的搭建,详细介绍了三功能水下电动机械手的设计与实验,给出了载体分系统的设计结果,利用Matlab工具箱和M函数构建了系统仿真模型,可以有效地对系统规划和控制算法进行验证(包括分别对载体分系统和机械手分系统的控制),可为进一步的现场试验提供指导和方法验证。  相似文献   

6.
Computational fluid dynamics (CFD) analysis was employed to numerically simulate impact of clay-rich submarine debris flows on a suspended (free-span) pipeline at various angles of attack. The resultant horizontal drag force can be decomposed into two components: normal and parallel to the pipe axis. A method is presented for estimating the normal and longitudinal drag forces on a suspended pipeline and is applicable to a wide of impact situations. The work presented here complements the results of an earlier investigation into the drag forces on suspended and laid-on-seafloor pipelines. The previous investigation consisted of both physical laboratory experiments and CFD numerical analyses, for an impact situation normal to the pipe axis. The impact Reynolds numbers presented in this paper range between about 2 and 320. This range is considered appropriate for practical design purposes.  相似文献   

7.
Positioning drag anchors in seabed soils are strongly influenced not only by the properties of the anchor and soil,but also by the characteristics of the installation line.The investigation on the previous prediction methods related to anchor positioning demonstrates that the prediction of the anchor position during dragging has inevitably introduced some key and unsubstantiated hypotheses and the applicability of these methods is limited.In the present study,the interactional system between the drag anchor and installation line is firstly introduced for the analysis of anchor positioning.Based on the two mechanical models for embedded lines and drag anchors,the positioning equations for drag anchors have been derived both for cohesive and noncohesive soils.Since the drag angle at the shackle is the most important parameter in the positioning equations,a novel analytical method that can predict both the variation and the exact value of the drag angle at the shackle is proposed.The analytical method for positioning drag anchors which combines the interactional system between the drag anchor and the installation line has provided a reasonable theoretic approach to investigate the anchor behaviors in soils.By comparing with the model flume experiments,the sensitivity,effectiveness and veracity of the positioning method are well verified.  相似文献   

8.
针对深海采矿实际需求,提出将集矿车上的液压站与集矿车分离,设计成相对独立、悬浮于集矿车前部上方的浮游体。设计了多金属结核概念车浮游体(以下简称浮游体)外形,并利用三维设计软件SolidWorks建立了其三维几何模型。在此基础上,对几何模型进行简化处理,建立了浮游体流体动力学计算模型。利用流体动力学仿真分析软件ANSYS CFX,采用雷诺时均算法(RANS算法)和两方程的k-ε湍流模型,得到了不同工况的阻力数据。采用Matlab曲线拟合功能,研究了浮游体阻力特性,验证了外形设计方案的可行性。  相似文献   

9.
The reduction of energy consumption for high speed submersible bodies is an important challenge in hydrodynamic researches. Supercavitation is a hydrodynamic process in which a submerged body gets enveloped in a layer of gas. As the density and viscosity of the gas is much lower than that of seawater, skin friction drag can be reduced considerably. If the nose of the body (cavitator) has a proper shape, the attendant pressure drag remains at a very low value, so the overall body drag reduces significantly. Total drag force acting on the supercavitating self-propelled projectiles dictates the amount of fuel consumption and thrust requirements for the propulsion system to maintain a required cavity at the operating speed. Therefore, any reduction in the drag coefficient, by modifying the shape of the cavitator to achieve optimal shape, will lead to a decrease of this force. The main objective of this study is to optimize the axisymmetric cavitator shape in order to decrease the drag coefficient of a specified after-body length and body velocity in the axisymmetric supercavitating potential flow. To achieve this goal, a multi-objective optimization problem is defined. NSGA II, which stands for Non-dominated Sorting Genetic Algorithm, is used as the optimization method in this study. Design parameters and constraints are obtained according to the supercavitating flow characteristics and cavitator modeling. Then objective functions will be generated using the Linear Regression Method. The results of the NSGA II algorithm are compared with those generated by the weighted sum method as a classic optimization method. The predictions of the NSGA II algorithm seem to be excellent. As a result, the optimal cavitator’s shapes are similar to a cone.  相似文献   

10.
The dynamic analysis of a deepwater floating structure is complicated by the fact that there can be significant coupling between the dynamics of the floating vessel and the attached risers and mooring lines. Furthermore, there are significant nonlinear effects, such as geometric nonlinearities, drag forces, and second order (slow drift) forces on the vessel, and for this reason the governing equations of motion are normally solved in the time domain. This approach is computationally intensive, and the aim of the present work is to develop and validate a more efficient linearized frequency domain approach. To this end, both time and frequency domain models of a coupled vessel/riser/mooring system are developed, which each incorporate both first and second order motions. It is shown that the frequency domain approach yields very good predictions of the system response when benchmarked against the time domain analysis, and the reasons for this are discussed. It is found that the linearization scheme employed for the drag forces on the risers and mooring lines yields a very good estimate of the resulting contribution to slow drift damping.  相似文献   

11.
A discrete time-delay control (DTDC) law for a general six degrees of freedom unsymmetric autonomous underwater vehicle (AUV) is presented. Hydrodynamic parameters like added mass coefficients and drag coefficients, which are generally uncertain, are not required by the controller. This control law cancels the uncertainties in the AUV dynamics by direct estimation of the uncertainties using time-delay estimation technique. The discrete-time version of the time-delay control does not require the derivative of the system state to be measured or estimated, which is required by the continuous-time version of the controller. This particularly provides an advantage over continuous-time controller in terms of computational effort or availability of sensors for measuring state derivatives, i.e., linear and angular accelerations. Implementation issues for practical realization of the controller are discussed. Experiments on a test-bed AUV were conducted in depth, pitch, and yaw degrees of freedom. Results show that the proposed control law performs well in the presence of uncertainties.  相似文献   

12.
A numerical multi-objective optimization procedure is proposed here to describe the development and application of a practical hydrodynamic optimization tool, OPTShip-SJTU. Three components including hull form modification module, hydrodynamic performance evaluation module and optimization module consist of this tool. The free-form deformation (FFD) method and shifting method are utilized as parametric hull surface modification techniques to generate a series of realistic hull forms subjected to geometric constraints, and the Neumann-Michell (NM) theory is implemented to predict the wave drag. Moreover, NSGA-II, a muti-objective genetic algorithm, is adopted to produce pareto-optimal front, and kriging model is used for predicting the total resistance during the optimization process to reduce the computational cost. Additionally, the analysis of variance (ANOVA) method is introduced to represent the influence of each design variable on the objective functions. In present work, a surface combatant DTMB Model 5415 is used as the initial design, and optimal solutions with obvious drag reductions at specific speeds are obtained. Eventually, three of optimal hulls are analyzed by NM theory and a RANS-based CFD solver naoe-FOAM-SJTU respectively. Numerical results confirm the availability and reliability of this multi-objective optimization tool.  相似文献   

13.
提出了一种基于人工免疫网络的遥感图像分类算法。该算法通过借鉴生物免疫网络的分类和泛化能力,训练出能反映训练数据分布特性的网络细胞,然后使用这些网络细胞进行分类。实验结果表明,基于人工免疫网络的遥感图像分类算法具有较好的分类性能,其分类总精度、kappa系数均优于一些传统分类算法。  相似文献   

14.
This paper proposes a novel approach to modeling the four quadrant dynamic response of thrusters as used for the motion control of ROV and AUV underwater vehicles. The significance is that these vehicles are small in size and respond quickly to commands. Precision in motion control will require further understanding of thruster performance than is currently available. The model includes a four quadrant mapping of the propeller blades lift and drag forces and is coupled with motor and fluid system dynamics. A series of experiments is described for both long and short period triangular, as well as square wave inputs. The model is compared favorably with experimental data for a variety of differing conditions and predicts that force overshoots are observed under conditions of rapid command changes. Use of the model will improve the control of dynamic thrust on these vehicles  相似文献   

15.
海底滑坡作为常见的海洋地质灾害,对海洋油气工程安全产生巨大威胁。海床土体失稳引起滑坡体滑动,会对海底管道产生拖曳作用。基于计算流体动力学方法(CFD)建立海底滑坡体对管道作用的评估模型,采用H-B模型描述块状滑坡体并与试验比较验证,分析不同海床倾斜度滑坡对管道的作用并拟合表达式;研究了海底管道在滑坡作用下的力学响应,并采用极限状态方法开展海底滑坡作用下管道结构极限安全分析,探讨了管道埋地状态时的极限安全界限,建立滑坡作用下管道结构安全分析方法。研究表明:滑坡对管道作用力与海床倾角呈现正相关,而覆土层厚度对作用力影响较小;随着不排水抗剪强度的减小,允许的滑坡宽度和速度均增加,表明土体不排水抗剪强度与引起的拖曳力呈正相关;滑坡土体宽度对极限安全速度影响较大。  相似文献   

16.
A quasi-linear model for determining the aerodynamic drag coefficient of the sea surface and the growth rate of surface waves under a hurricane wind is proposed. The model explains the reduction (stabilization) in the drag coefficient during hurricane winds. This model is based on the solution of the Reynolds equations in curvilinear coordinates with the use of the approximation of the eddy viscosity, which takes into account the presence of the viscous sublayer. The profile of the mean wind velocity is found with consideration for nonlinear wave stresses (wave momentum flux), whereas wave disturbances induced in air by waves on the water surface are determined in the context of linear equations. The model is verified by comparing the calculation results with experimental data for a wide range of wind velocities. The growth rate and drag coefficient for hurricane winds are calculated both with and without consideration for the shortwave portion of the windwave spectrum. On the basis of calculations with the quasi-linear model, a simple parametrization is proposed for the drag coefficient and the growth rate of surface waves during hurricane winds. This model is convenient for use in models of forecasting winds and waves.  相似文献   

17.
Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.  相似文献   

18.
Coastal wetlands such as salt marshes and mangroves provide valuable ecosystem services including coastal protection. Many studies have assessed the influence of plant traits and wave conditions on vegetation-induced wave dissipation, whereas the effect of tidal currents is often ignored. To our knowledge, only two studies investigated wave dissipation by vegetation with the presence of following currents (current velocity is in the same direction as wave propagation) (Li and Yan, 2007; Paul et al., 2012). However, based on independent experiments, they have drawn contradictive conclusions whether steady currents increase or decrease wave attenuation. We show in this paper that this inconsistency may be caused by a difference in ratio of imposed current velocity to amplitude of the horizontal wave orbital velocity. We found that following currents can either increase or decrease wave dissipation depending on the velocity ratio, which explains the seeming inconsistency in the two previous studies. Wave dissipation in plant canopies is closely related to vegetation drag coefficients. We apply a new approach to obtain the drag coefficients. This new method eliminates the potential errors that are often introduced by the commonly used method. More importantly, it is capable of obtaining the vegetation drag coefficient in combined current–wave flows, which is not possible for the commonly used calibration method. Based on laboratory data, we propose an empirical relation between drag coefficient and Reynolds number, which can be useful for numerical modeling. The characteristics of drag coefficient variation and in-canopy velocity dynamics are incorporated into an analytical model to help understand the effect of following currents on vegetation-induced wave dissipation.  相似文献   

19.
风应力拖曳系数选取对风暴潮数值模拟的影响   总被引:8,自引:0,他引:8  
在风暴潮的形成中风应力起决定性作用 ,风应力拖曳系数决定了大气与海洋间的动量传输率。观测结果表明 ,风应力拖曳系数随风速而变化 ,与海面粗糙度有关。文中采用几种与风速有关的风应力拖曳系数表达式进行数值模拟 ,与将其视为常数情况相比较 ,计算结果的精度均有较明显提高。对比各表达式模拟结果 ,采用 Smith(1980 )风应力拖曳系数公式的模拟效果为最好  相似文献   

20.
The reduction of energy consumption of high speed submersible bodies is an important challenge in hydrodynamic researches. In this paper, shape optimization of two-dimensional cavitators in supercavitating flows is studied. A two dimensional supercavitation potential flow passes a symmetric two dimensional cavitator, which is placed perpendicular to the flow in a channel of infinite length and immediately a cavity is formed behind the cavitator. This is because of the generation of a gas or vapor cavity between the body and the surrounding liquid due to the change in a high speed flow direction passing the cavitator. Drag force acting on this supercavitating body dictates the thrust requirements for the propulsion system, to maintain a required cavity at the operating speed. Therefore, any reduction in the drag force, by modifying the shape of the cavitator, will lead to decrease this force. This study concentrates on the optimization of two dimensional cavitators in order to decrease drag coefficient for a specified after body length and velocity in a potential flow. To achieve this goal a multi-objective optimization problem is defined to optimize cavitator shapes in supercavitating flow. The so-called NSGA II (Non-dominated Sorting Genetic Algorithm) algorithm is used as an optimization method. Design parameters and constraints are obtained according to supercavitating flow characteristics and cavitator modeling and objective functions are generated using Linear Regression Method. The obtained results are compared with other classic optimization methods, like the weighted sum method, for validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号